

NAt:abNAl ·eow:··~ . r~EHtt~SiVESC~~oo
HUCKNALl.

BASIC V

A Dabhand MiniGuide

Mike Williams

BASIC V
A Dabhand MiniGuide
© Mike Williams 1989-91
ISBN 1-870336-75-5
First edition March 1989, second printing March 1991

Editor: Lynda Atherton
Typesetting: Ian Bishop-Laggett
Cover: Clare Atherton
Illustrations: Ian Bishop-Laggett

Acomsoft is a trade mark of Acom Computers Ltd., 645 Newmarket Road,
Cambridge, CBS 8PB. The Apple Macintosh and Laserwriter are produced by Apple
Computer Inc.

Within this book the letters BBC refer to the British Broadcasting Corporation. The
terms BBC micro, Master 128, Master Compact and Archimedes refer to the
computers manufactured by Acom Computers Ltd. under licence from the BBC.
lnterWord is published by Computer Concepts.

All rights reserved. No part of this book (except brief passages quoted for critical
purposes) or any of the computer programs to which it relates may be reproduced
or translated in any form, by any means, mechanical electronic or otherwise,
without the prior written consent of the copyright holder.

Disclaimer: Because neither Dabs Press nor the author have any control over the
way the material in this book and accompanying programs disc is used, no warranty
is given, or should be implied, as to the suitability of the advice or programs for any
given application. No liability can be accepted for any consequential loss or damage,
however caused, arising as a result of using the programs or advice printed in this
book/programs disc.

Published by Dabs Press, PO Box 48, Prestwich, Manchester, M25 7HF
Tel. 061-773 8632, Fax 061-773 8290

Typeset in 10 on llpt Palatino by Dabs Press.

Printed and bound in the UK by BPCC Wheaton, Exeter EX2 8RP (0392-74121)

Contents

1 Introduction 7

2 Operators 10
New Assignment Operators 10
New Unary Operators 11
New Binary Operators 12
Swapping Variables 14

3 String Handling 16
String Functions 16
String Handling in Files 18
Organisation and Allocation of 19
New Memory Allocation System 19

4 Control Structures 21
WHILE Loops 21
Block-Structured IF 22
The CASE Statement 25

5 Procedures & Functions 29
Passing Parameters 29
Passing Arrays as Parameters 32
Local Arrays 33
Procedure and Function Libraries 34
Dynamic Loading of Procedure 36

3

BASIC V

6 Error Handling 37
Local Error Trapping 38
Local DATA 42
New ERROR Keyword Usage 42
Revised Error Numbers and Messages 43

7 Matrices 44
Introducing Whole-Array Operations 45
Whole-Array Operations: Constants 46
Arrays: Operation on with a Constant 47
Binary Operations on Arrays 47
Modulus Function 49
Summation 49
General Comments 50

8 Using Colour 51
Sixteen-Colour Modes 52
Changing Colours 53
Pointer, Border and Flashing Colours 56
Using the 256-colour modes 57
Using 64 Colours 57
Understanding 256-Colour Modes 60
Redefining the Palette 60
Final Comments 63

9 Graphics 67
New Graphics Commands 67
Fill Routines 72
Relative Co-ordinates 72
Plotting Sprites 73

10 Archimedes Mouse 74
Input from the Mouse 75
Further Mouse Controls 78
Colouring the Mouse Pointer 79
Example Mouse Program 80

4

11 Sound
BASIC Sound Instructions
Setting the Stereo Position
Setting and Reading the Beat
Setting and Reading the Tempo
Sound Statement
Star Commands

12 Commands

13 ARM Assembler
Calling Machine Code Routines
Using CALL with Parameter Passing.

14 Operating System Calls
SYS Calls

15 Miscellaneous Changes
LINE INPUT
ON and OFF
QUIT

END

Mode Changes in Functions
Improved PRINT Accuracy
Increased Line Number Range
Improved COUNT

Syntax Checking on Entry
Use of TIME

A : New Keywords in BASIC V

B : Keywords with New Meanings

C : Screen Modes

Contents

83
83
84
85
85
86
87

89

92
94
96

99
99

103
103
103
103
104
104
104
104
105
105
105

106

107

108

5

BASIC V

D: Dabhand Guides Guide 110

Index 119

This Book and You!
This book was written using the VIEW wordprocessor on a Master
Compact microcomputer. The author's files were also edited in VIEW. The
completed manuscript was transferred serially to an Apple Macintosh SE
where it was typeset using MacAuthor. Final camera-ready copy was
produced on an Apple Laserwriter llNT from which the book was printed
by A. Wheaton & Co. All programs were developed and fully tested using
an Archimedes 310 system.

Correspondence with Dabs Press, or the authors, should be sent to the
address given on page 2 or via electronic mail on Telecom Gold (72:
MAG11596) or Prestel (942876210). An answer to your letter or mailbox
cannot be guaranteed, but we will try our best.

All correspondents will be advised of future publications, unless we
receive a request otherwise. Personal details held will be provided on
request, in accordance with the Data Protection Act. Catalogues detailing
the full range of Dabs Press books and software are available free of
charge on request.

6

1 : Introduction

Since the advent of the BBC micro in the autumn of 1981, it has been my
view that BBC BASIC is one of the best implementations of this language
produced for any computer. There are various reasons for making such a
claim, the control of graphics, the access provided to the Operating
System, the opportunities for sound, and more. Above all, it is its support
for structured programming that most appeals.

Look at almost any program written in BBC BASIC and you will see ample
evidence of this approach. Typically, you will find a comparatively short
main program, followed by large numbers of functions and procedures,
and nary a GOTO or GOSUB in sight. Given that many users of BBC BASIC
would not call themselves professional programmers, I take this
widescale adoption of structured programming to provide ample support
for its benefits. Prominent among these must be that such programs are
eminently more readable and understandable than those which make
frequent use of GOTO and GOSUB. Understandable programs are far more
likely to work, and much easier to modify in the future, if and when the
need arises.

Despite that, there have been a number of omissions even in BBC BASIC
until now. For example, the IF ... THEN .. . ELSE statement has often been the
source of confusion when used in a nested form. The impossibility of
executing any built-in loop structure (FOR. .. NEXT and REPEAT ... UNTIL) less
than once will also, I am sure, strike a chord in many. These are not the
only areas where BBC BASIC is less than perfect.

Despite its shortcomings, BBC BASIC's widespread acceptance, particularly
among educational users, has seen the release of implementations of BBC
BASIC on other machines, notably the RML Nimbus, the Atari ST and, quite
recently, the Apple Macintosh. Unfortunately, not all the features of BBC
BASIC that make the language so good, transfer sufficiently well onto
other machines.

7

BASIC V

Now we have the RISC-based Archimedes, Acorn's latest range of personal
computers. To accompany the Archimedes, Acom has released a new
version of the BASIC language called BBC BASIC v. BASIC v is clearly an
evolutionary step in the development of BBC BASIC. Virtually all that
existed before remains, even if some features are implemented quite
differently, for example, the software simulation of Teletext mode 7.
Many existing BBC BASIC programs will run without modification on an
Archimedes, using ARM BASIC, not just under the 6502 emulator. In many
cases they benefit from the enormous increase in speed that the
Archimedes provides.

The thing that really sets BASIC v apart from previous versions is the
addition of several important programming structures, WHILE ... ENDWHILE,
CASE ... ENDCASE for example, and, not before its time, a fully block
structured IF ... THEN ... ELSE. There is also a a full range of matrix operations,
improved parameter passing to functions and procedures, support for the
new 256 colour modes and the Archimedes palette of 4096 colours. This list
by no means exhausts the new additions - a wealth of smaller details has
substantially improved an already respected language.

Despite all these new features, there is, I believe, a very real danger that
many Archimedes users, accustomed to using BBC BASIC on the BBC micro
and other machines, will fail to appreciate the much richer programming
environment that now exists with BASIC v. Thus this book, which might
seem to have an obvious theme in documenting and explaining all that is
new in BASIC v, will, I hope, also serve to show just what riches now await
the adventurous and imaginative programmer.

Another point to consider here is ~he...pRenness of the Archimedes, and
indeed any BBC micro. There is no d:itfl!:"filt.Y',-~s _with some machines, in
accessing from BASIC the many Operating System routine'!>, both within
the os ROM and in the manrrelocatable modules used .to extend the
Operating System. There was a great temptation to stray from the
straight and narrow and attempt to cover all of these areas as well.

What I have done is to explain, as fully as possible, all the new features,
large and small, of BASIC v itself. In addition, I have covered the means
which BASIC provides to the programmer to go outside the confines of the
BASIC language in order to exploit the whole of the Archimedes system.
Apart from a few enticing tasters, these wider aspects are beyond the

8

Introduction

scope of this book. The boundary that I have drawn may at times seem
arbitrary, but fundamentally I believe that it has a sound logical basis.

I have included plenty of short examples, and tried to ensure that the new
features of BASIC v are frequently included in them. Much can be learnt
from other people's programs. Inevitably, you will find some new ideas
being used before they have been fully described, and you may wish to
follow any such new ideas when you come across them. This should cause
no problems. The chapters do form a logical order, but each one is largely
self contained.

The book is aimed at those who have reasonable familiarity with
programming in BBC BASIC. This is not a book for complete beginners, nor
is it necessarily addressed to those who find their greatest interest deep in
the bits and bytes of assembler. It is for the very large majority of
Archimedes users who simply want to exploit this super machine to the
best of their ability.

I hope you will learn something, and that you will get satisfaction from
that learning process, and from putting your new knowledge into
practice. Don't, however, be afraid to experiment. Some of the details in
this book were only determined by extensive trial and error. Remember,
there is no substitute for practical experience.

9

2 : Operators

Our investigation of BASIC v starts with a comparatively low-key subject,
but one which forms the core of so many instructions. All programming
languages use a variety of operators. Obvious examples are the
arithmetic operators such as multiply (*) and divide (/). There are also
logical operators such as AND and OR, and there are relational operators
such as 'greater than'(>) and 'not equal to' (<>).

Some symbols can have more than one meaning, determined by the
context in which they are used. For example, the equals symbol(=) is used
both as a relational operator (eg, IF x=y THEN ...) and as an assignment
operator (eg, disc=b"2-4*a*c). Similarly the plus sign (+)is used both for
the addition of numbers and the concatenation (joining together) of
strings (A=B+C and A$=B$+C$).

New Assignment Operators
BASIC v introduces a number of additional operators. There are two new
assignment operators for incrementing or decrementing the values of
variables. Examples are:

X+=l: Y+=l Increment X and Y by one .
X-=FNmouse Decrement X by the value returned by FNmouse.

The variable on the left of the 'plus/equals' (or 'minus/equals') sign is
incremented (or decremented) by the value of the expression to the right
of this sign. The examples above are equivalent to:

X=X+l : Y=Y+l
X=X-FNmouse

There is one small but important difference between the two forms, the
old and the new. On the Archimedes, a statement like:

X=X+l

is sufficient to declare the variable x with an initial value of zero, which is
then incremented. The new form:

X+=l

10

Operators

does not initialise x, and unless this has been explicitly undertaken
beforehand, an error will result ("Mistake").

New Unary Operators
Unary operators are those that operate on a single value rather than two,
as do most operators. Minus(-) is a unary operator because we can write
statements like:

Xl=-X

where the minus sign is applied to the value of x, and the resulting value is
assigned to the variable XL The minus sign, confusingly, can also be used
as a binary operator, (binary meaning that it has two operands), when
used to indicate the operation of subtraction. Other examples of unary
operators that already exist are the tilde (-) and ampersand (&) for
conversion to and from hexadecimal formats, and the so-called
indirection operators(?,! and$), the first two of which can be used both as
unary or binary operators.

BASIC v adds two new unary operators to those already available. These
are 'per cent' (%) to indicate a binary value (just as & indicates
hexadecimal) and 'bar' (I) to specify 5-byte floating-point indirection.
Thus %101101 is the same as 45 (decimal) and &2D (hex). You will also
find that -%101101 will convert the binary format directly into a
hexadecimal format (&20). The main purpose of this operator is to allow
constants to be specified in binary where this is more appropriate. For
example, if you want to convert a character (entered as either upper or
lower case) into upper case only, the following conversion will suffice:

char=GET AND %11011111

Since the AND is specifically required to operate in a bit-wise manner,
specifying the second operand in binary makes much more sense.
Unfortunately, there is no binary equivalent of the tilde(-) for conversion
of numbers into a binary format for display and printing.

The other new unary operator extends the indirection operators to
include floating point explicitly. Thus, given a suitable memory location
(say P%), the following assignments may be made:

?P%=123
!P%=32666

byte - maximum value 255
integer - standard four-byte format

11

BASIC V

IP%=3.1415927 floating point - standard five-byte format
$P%="Hello" string - terminated by a zero

Unlike the byte and integer indirection operators, the new floating-point
indirection operator may only be used as a unary operator. Thus:

P%15=3.1415927

is illegal and will generate the error message "Mistake". However, there
is no constraint on using the new operator in the form:

I (P%+5)=3.1415927

This form, therefore, provides an even better alternative to the '!'
operator for copying sections of memory from one location to another, by
moving five rather than four bytes at a time.

New Binary Operators
As already explained, binary operators are those which require two
operands, and are nothing in particular to do with the binary number
system. BASIC v now provides three shift operations as follows:

X >> b Arithmetic shift right
X >>> b Logical shift right
X << b Logical shift left

The first operand is the value to be shifted, and the second specifies the
number of bits. The User Guide gives scant information on the precise
action performed by these operators and yet the detail of how they work is
crucial. In principle, shifting 1 bit to the right is equivalent to dividing the
number by 2, while shifting 1 bit to the left is equivalent to multiplying by
the same amount.

When applying a shift, BASIC converts any number into a 32-bit format.
These operations can be applied to floating point numbers and variables
provided that their values do not go beyond the accepted integer range
(-2147483648 to 214783647 decimal, &FFFFFFFF to &7FFFFFFF hex). For this
reason it is best to confine these operations to integer variables and their
values only. In any case, it makes little sense to apply what are essentially
bit-wise operations to floating point numbers held in mantissa/ exponent
format (often called 'scientific' notation).

12

Operators

The arithmetic shift right preserves the sign, while the number, positive or
negative, becomes smaller and smaller. This is illustrated in figure 2.1. If
the operation is repeated indefinitely, then a steady state is ultimately
reached with the smallest positive (O) or negative (-1) number that can be
represented. Because BASIC uses a twos complement notation, -1
(decimal) is represented by an all ones value in binary (&FFFFFFFF in hex).
Further arithmetic shifts to the right merely serve to preserve the existing
number.

I 11011001 I 10110110 I 00111000 I 10011001

after >>4 becomes:

I 11111101 I 10011011 I 01100011 I 10001001

Figure 2.1. An example of an arithmetic shift right.

Contrast this with what happens when a logical shift right is applied. This
time the 32 bits are treated as an unsigned value and all bits are shifted to
the right, with zero being introduced from the left. Repeated applications
of the logical shift right will therefore always result ultimately in a zero
value, regardless of the starting value or what it represents.

11011001 I 10110110 I 00111000 I 10011001

after >>>4 becomes:

00001101 I 10011011 I 01100011 I 10001001

Figure 2.2. An example of a logical shift right.

There is only one shift left and this does not preserve the sign (if any),
while zeros are shifted in from the right. Since a '1' in the left-most bit
position indicates a negative number in twos complement notation, you
are likely to find that any number apparently oscillates between positive
and negative if a shift left is applied repeatedly.

The shortest way to try this out for yourself is to use the following in
immediate mode and look at the results:

X%=45: REPEAT:P.-X%,X%:X%=X%>>l:UNTIL FALSE

13

BASIC V

This will produce a list of both hexadecimal and decimal values as the
value initially assigned to X% is progressively shifted one bit at a time.
Just substitute whatever integer value you want to try in place of the 45
(and you will need to substitute both negative and positive values to see
properly what is happening), and replace the '>>'by either of the other
two shift operators('>>>' and'<<') as you wish. Use ESCAPE to terminate
execution.

A more sophisticated version of this routine, which prompts for the initial
number and shift operator, is listed at the end of this chapter. The output
is displayed in hexadecimal and decimal formats in order to provide the
maximum information. Try both positive and negative numbers with all
three types of shift operator in turn.

As a simple example of the application of shift operations in BASlC v,
consider the selection of colours in the 256-colour modes (modes 10, 13
and 15). If the variables red%, green% and blue% each specify the amount
of these primary colours (in the range 0 to 3), then any one of 64 colours
may be selected by writing:

COLOUR blue%<<4 + green%<<2 + red%

The 64 colours may be expanded to 256 by the addition of tint in which
case the statement above becomes modified to:

COLOUR blue%<<4 + green%<<2 + red% TINT tint%<<4

Swapping Variables
Although not strictly an operator, we complete this chapter by looking at
the new sw AP command. This allows the values of two variables
(including elements of arrays), or two complete arrays, to be swapped.
The typical statement found in sort routines:

IF data(I%)>data(I%+1) THEN PROCswap(I%)

where PROCswap is defined as:

DEF PROCswap(i%)
LOCAL temp
temp=data(i%) :data(i%)=data(i%+1) :data(i%+l)=temp
ENDPROC

can now be written very simply as:
IF data(I%)>data(I%+1) THEN SWAP data(I%),data(I%+1)

14

Other examples of the SWAP statement could include:
SWAP name1$,name2$
SWAP newx,oldx
SWAP matrixl(),matrix2()

Operators

Values being swapped must both be of the same type (integer, floating
point, or string). In the case of complete arrays, the number of subscripts
and the upper limits of the two arrays are also swapped. Thus, if two
arrays are dimensioned as:

DIM fred(20), freda(30,30)

then, after executing SWAP fred(),freda(), it would be as though the two
arrays had been dimensioned as:

DIM fred(30,30), freda(20)

Listing 2.1. Demonstration of Shift Operations.

10 REM >Chap2-1
100 MODE7:VDU14
110 PRINTTAB(12,l)"SHIFT OPERATORS"
120 VDU28,0,24,39,3
130 ON ERROR PROCerror:IF err% THEN END
140 DIM shift$(3) :shift$(1)=">>"
150 shift$(2)=">>>":shift$(3)="<<"
lGO REPEAT:CLS
170 INPUT''"Enter any integer value: "X%
180 PRINT' TAB (5) "1.Arithmetic shift right"
190 PRINT'TAB(5)"2.Logical shift right"
200 PRINT'TAB(5)"3.Shift left"
210 INPUT'"Enter operation required (1, 2, 3): "P%
220 PRINT'TAB(5)"Hex"TAB(23)"Decimal"'
230 REPEAT
240 PRINT -X%,SPC7,X%
250 X%=EVAL("X%"+shift$(P%)+"1")
260 UNTIL X%=0 OR X%=-1
270 PRINT-X%,SPC7,X%
280 PRINT"Press any key to continue";:G=GET
290 UNTIL FALSE
300 END
310
320 DEF PROCerror:err%=FALSE
330 IF ERR<>20 THEN
340 MODE12:err%=TRUE
350 PRINT REPORT$;" at line ";ERL
360 ENDIF
370 ENDPROC

15

3 : String Handling

String Functions
Probably the most frequently used string functions in BBC BASIC are LEFf$,
MID$ and RIGHT$. In BASIC v all three functions have enhanced functionality
offering additional facilities. The existing interpretations remain as
before. Both LEFf$ and RIGHT$ may now take a single character string as
their sole parameter. For example, given:

data$=" Appalachians"

then the assignment:

one$=LEFT$(data$)

would assign the character string "Appalachian" to the variable one$.
Effectively, the string specified is reduced by one character from the right,
and avoids the previous requirement of:

one$=LEFT$(data$,LEN(data$)-l)

The equivalent use of RIGHT$ is used as follows:
two$=RIGHT$(data$)

and would result in two$ being assigned the right-most character of
data$. Thus given a string data$, there is a simple relationship between
these functions in the form:

data$=LEFT$(data$)+RIGHT$(data$)

One possible use of these new formats is in stripping characters from the
right-hand end of a string. This process is the reverse of padding out a
string for justification or for file handling using fixed-length fields. For
example, a suitable function could be written as:

16

DEF FNstrip(data$,pad$)
WHILE RIGHT$(data$)=pad$

data$=LEFT$(data$)
END WHILE
=data$

String Handling

where pad$ is the character selected previously for padding out the string
in the first place (this could be space - ASCII 32 - or any other character
depending on the context). Notice, too, the efficiency of the new WHILE

construction for this purpose (see Chapter Four), compared with
REPEAL.UNTIL. Even if the string specified contains no pad characters the
function still works correctly, whereas this would need to be treated as a
special case using REPEAT ... UNTIL, which always executes a loop at least
once.

A new variation on the MID$ function has also been provided. It differs
from other forms in that the MID$ function appears on the left-hand side of
an assignment statement. Again, this is most easily explained by means of
an example. Given:

town$="Newcastle-under-Lyme"

the assignment:

MID$(town$,11,10)="upon-Tyne"

would result in the variable town$ containing the string "Newcastle
upon-Tyne".

To the right of the equals sign may be any expression which evaluates to a
string. The characters are used to replace specified characters within the
string variable supplied as the first parameter in the MID$ function. The
second parameter indicates the position of the first character to be
replaced, while the third parameter, which is optional, specifies the
maximum number of characters to be replaced. If this third parameter is
omitted, then all the following characters may potentially be replaced.
Note, however, that it is the length of the string contained within the first
string variable that determines how many characters will be replaced, not
the number of characters to the right of the '=' sign. If the example above
had been given the other way round as:

town$="Newcastle-upon-Tyne"

then the assignment:

MID$(town$,ll,9)="under-Lyme"

would result in town$ containing just "Newcastle-under-Lyme". Starting
at the 11th character of the original string assigned to town$, there are
only 9 characters marked to be replaced. The string "under-Lyme"
contains 10 characters, so the last one remains unused.

IV-I 17

BASIC V

Another way of looking at this use of MID$ is to consider how the same
function might have been written previously. Thus:

MID$(string1$,p,q)=string2 $

is the equivalent of:

string1$=LEFT(string1$,p-1) +
MID$(string2$,p,q) +

RIGHT$(string1$,LEN(string1$)-p-q+l)

Although this conveys quite well the idea of taking the left-hand part,
replacing the middle part, and then keeping the right-hand part, this
would more likely be written as:

string1$=LEFT(string1$,p-1) +
MID$(string2$,p,q) + MID$(string1$,p+q)

String Handling in Files
Two further string functions have been enhanced in BASIC v for use when
reading data from files. The function:

GET$iC

will read a string of characters from an open file until a linefeed (CHR$10),
carriage return (CHR$13), null character (CHR$0) or until end-of-file (EOF#
returns true) is found. However, the maximum number of characters that
may be read in cannot exceed 255. As with other instructions for reading
and writing data, the instruction must specify the channel number of the
file to be used, which should already be open, for example:

data$=GET$#C

The ability to read a string from a file with GET$# has been complemented
by a new version of the BPUT# function, which may now ·also be used to
write a string to a file. The format is:

BPUTifC,data$

where c is the channel number of the file to be used and data$ is any
expression which evaluates to a character string. The resultant string plus
a terminating linefeed character (ASCII 10) is sent to the file. If the string
specified is terminated by a semi-colon as in:

BPUTifC,data$;

then the terminating linefeed character is omitted. In either case, the
maximum string length is again 255 characters.

18

String Handling

Organisation and Allocation of
String Storage
The organisation and allocation of memory for string storage in BASIC v
has been completely changed compared with the system used for BBC

BASIC. This system was potentially wasteful of space if character strings of
varying sizes were to be assigned to the same string variable at frequent
intervals. If a character string was to be assigned to a string variable, then
new space would be allocated from remaining free memory if it was
larger than the space previously allocated to that string variable. The old
memory allocation would then be 'thrown away', and would be effectively
lost to the program for any future use.

Thus, a situation in which progressively larger strings are assigned to a
string variable will cause new memory to be assigned each time and the
old allocation wasted. This system was 'improved' by two particular
techniques. First, new memory was always allocated at four bytes more
than the immediate requirement to allow some room for future expansion
of that string. Second, if the existing memory was contiguous with free
space then it was kept and extended. BASIC programmers, aware of the
resulting memory problems, developed various techniques to minimise the
effects. The principal method used was to assign to any frequently used
string variable, a character string of the maximum length that the
program would be called upon to handle. This avoided any need for future
allocations of memory space. Of course, if the string was not to grow to
that extent, then memory space would be wasted anyway.

New Memory Allocation System
BASIC v implements a totally new method of string storage. When a new
character string is to be assigned to a string variable which is greater in
length than the space already allocated, then that space is de-allocated
and new string space used. However, the discarded string space is now
added to a linked list of similar space of the same length. The system
maintains a set of linked lists, each one containing string space of the
same size.

When new string space is required, BASIC first checks with the appropriate
linked list and if there is an entry it takes it. If no space of the right size is

19

BASIC V

available it then assigns string space from free memory. The new system
will still extend existing string space if this is contiguous with free
memory. However, only the current string length (CLEN) is stored,
whereas before, both this and maximum string length (MLEN) were stored
for every string. This represents a useful memory saving, particularly for
string arrays.

The new system is intended to reduce significantly the loss of memory
through the inability to re-use discarded string space, while the multiple
linked lists of free string space provide a faster method of locating and
assigning string space as required.

String space is always allocated in multiples of words (not bytes), and
strings are always aligned on word boundaries. The new system improves
on the previous system of memory allocation, but is still less than perfect.
Most programs are still likely to generate unusable string space, but the
much greater memory of the Archimedes (compared with older BBC
micros) should reduce the likely incidence of insufficient memory.
Certainly there is now much less advantage to be gained from the
previous technique of initialising a string to the longest length needed.

20

4 : Control Structures

All programs consist essentially of two types of instruction, those that
instruct the computer to perform some action, such as the addition of two
numbers or the printing of a text message, and those that control the
order of execution of the instructions in a program. Although BASIC has
generally been weak in such control structures, BBC BASIC has traditionally
provided more facilities than most.

Three control structures exist, namely FOR. .. NEXT, REPEAT.. .UNTIL and
IF ... THEN ... ELSE. The first two provide alternative methods of controlling
loops, but in both cases the body of the loop, that is the group of
instructions contained within the loop, is always executed at least once.
Even in instances where a FOR ... NEXT loop is used logically one would not
expect this to happen, but it still does. This results from the fact that, in
both structures, the test to determine whether the body of the loop should
be executed (again) is only reached after the loop has been executed at
least once. The problem can be avoided, but only artificially.

The existing IF ... THEN ... ELSE statement also suffers in not providing a true
block-structured format, and unless used with extreme care it is
extraordinarily easy to become lost in the logic of this instruction when
nested to any degree.

BASIC v extends the range of control structures considerably. In particular
there is now a CASE statement, in effect a multi-branched IF ... THEN ... ELSE. A
new variant of the IF .. . THEN ... ELSE statement itself has been added, which
implements proper block structuring, and a new WHILE ... ENDWHILE
structure provides a loop format, where the test comes at the
commencement of the loop rather than at the end.

WHILE Loops
Students of computer science will be quite familiar with the concept of a
WHILE loop, which is considered to be one of the most fundamental (and
most natural) of control structures. It takes the form:

21

BASIC V

WHILE <condition>:<statements>
<statements>
<statements>

END WHILE

While the specified condition remains true, the statements between WHILE

and ENDWHILE will continue to be executed. The statements may be on the
same line as the WHILE or on separate lines. For example, you might write:

100 Sum=O:k=l
110 WHILE Sum<=lO:Sum=Sum+l / k:k=K+l:ENDWHILE
120 PRINT k
130 END

This program determines the number of terms in the series:

l+l/2+1/3+1/4+1/S+

required to produce a sum greater than 10. The great advantage of the
WHILE loop is that if the condition fails (ie, returns a value FALSE) the very
first time it is tested, then the following statements will not be executed at
all, just what we would logically expect.

Here is another very simple example:
i=l
WHILE (i<max AND list(i)<>key) :i+=l:ENDWHILE

The coding assumes that an array called list() has been dimensioned to
size 'max', and searches the list for an element whose value matches that
of 'key'. When the loop terminates, 'i' contains the value of the matched
element, or is set to the value of 'max' if no match has been found. Notice
how, in this example, more work is done in evaluating the condition than
in the body of the loop. This is not uncommon.

WHILE .. . ENDWHILE structures may also be nested in the same way as FOR
loops and REPEAL.UNTIL loops. Each loop must be correctly terminated
with an ENDWHILE statement. Likewise, the statements within a
WHILE ... ENDWHILE construction mafY include other forms of control
structure such as CASE ... ENOCASE, REPEAL.UNTIL and FOR. .. NEXT.

Block-Structured IF
BBC BASIC has always supported an IFr .. THEN ... ELSE statement, but this has
been limited in two separate but linkef ways, which particularly affect the
nested use of IF ... THEN ... ELSE. The complete structure must be contained

22

Control Structures

within a single line of BASIC (thus limited to a maximum of 255 characters),
while the logical interpretation of nested IF ... THEN .. . ELSE statements
frequently leads to confusion. As a result, many instances of more complex
usage often fail to work correctly, and much time can be wasted in sorting
this out.

For example, consider the following:
IF (bA2-4 *a*c)<>O THEN IF (b A-4*a*c) >O THEN PRINT"Roots are

real" ELSE IF (b A2-4*a*c) < 0 THEN PRINT"Roots are complex" ELSE
PRINT"Roots are equal"

Now most programmers are familiar with solving quadratic equations,
and can therefore follow what the above code is intended to achieve, but
could you say with confidence whether this form of coding is correct? The
new block-structured form of IF ... THEN ... ELSE should help to bring new
clarity to such situations as we shall see. It also removes the 255 character
limitation on the length of such statements by allowing them to spread
over as many separate lines of BASIC as required. In addition, the old form
of IF .. THEN ... ELSE is still retained, and may continue to be used wherever
appropriate. Indeed, its simpler form should always be used if possible.

The syntax of the block-structured IF takes the following form:

IF <condition> THEN
<statements>

ELSE
<statements>

END IF

The structure is reasonably flexible, but the following constraints must
always be observed. The THEN must be the last item on a line, while ELSE

and ENDIF must be the first items on their respective lines. In addition, the
ELSE clause is optional, the ENDIF is not. Thus, the example on the solution
of quadratic equations could now be coded as:

IF (b A2-4 *a*c)<>O THEN
IF (bA-4*a*c) > O THEN

PRINT"Roots are real"
END IF
ELSE
IF (b A2-4 *a *c)<O THEN

PRINT" Roots are complex"
END IF

ELSE
PRINT"Roots are equal"

END IF

23

BASIC V

Each line given above would be written as a separate numbered line of
BASIC. There are two nested IF ... THEN ... ELSE constructions, the outer one
concerned with whether (b"2 -4*a*c) is zero or not, and, in the case of a
non-zero value, a further IF ... THEN ... ELSE to distinguish between positive
and negative values. You will probably find that it still helps to indent
some of the lines as above to make the logic quite clear.

The example I have used above, and in particular the manner in which I
have expressed it, is somewhat artificial, though it serves to illustrate the
point. Keeping the same overall structure, the block-structured version
could be more succinctly written as:

IF (bA2-4*a*c)<>O THEN
IF (bA2-4*a*c)>O THEN PRINT"Roots are real"
IF (bA2-4*a*c)<O THEN PRINT"Roots are complex"

ELSE
PRINT"Roots are equal"

END IF

There are, no doubt, many other variations, and it is perfectly possible to
code the example using the simple IF ... THEN ... ELSE construction, all on one
line of BASIC:

IF (bA2-4*a*c)=0 THEN PRINT"Roots are equal"
ELSE IF (bA2-4*a*c)>O THEN PRINT"Roots are real"
ELSE IF (bA2-4*a*c)<0 THEN PRINT"Roots are complex"

If you are using the simple form of IF ... THEN ... ELSE, you will generally find
that ELSE followed by IF (as in the example above) gives no cause for
concern, but that THEN followed by IF (as in the original coding) frequently
leads to confusion and incorrect logic.

The moral is to think carefully about the logic of the algorithm you are
about to code. There is every reason to retain the simpler form of
IF ... THEN ... ELSE where this is clear and unambiguous. If you need to exceed
the limited capacity of one line of BASIC, or the logic is more than the
simpler form can adequately cope with, bring the block-structured form
into play.

24

Control Structures

The CASE Statement
A CASE statement is, in effect, a generalised form of IF .. . THEN ... ELSE. The
latter essentially allows a program to distinguish between two
alternatives based on whether a condition is true or false. The CASE
statement allows the condition (or state) which is to be tested to have as
many alternative values as you wish, and specifies the action to be
followed in each 'case'.

The syntax for the CASE statement takes the following form:

CASE <expression> OF
WHEN <states>: <statements>
WHEN <states>: <statements>

OTHERWISE <statements>
END CASE

A simple example will help to make this clear. The Archimedes mouse, for
example, has three buttons generally referred to as select, menu and
adjust. Thus a routine to provide mouse control in a program could be
written as:

MOUSE x , y , z
CASE z OF

WHEN 4: PROCselect
WHEN 2 : PROCmenu
WHEN 1: PROCadjust

END CASE

This coding would probably be embedded in some sort of loop so that the
program can continually follow the movement of the mouse. The value of
z determines which mouse button has been pressed by the user (BASIC
allocates 4 for select, 2 for menu and 1 for adjust). The three WHEN
statements each call an appropriate procedure corresponding to the
button pressed.

BASIC goes through the list of WHEN statements until it finds a match
between the value specified and the value of the expression following
CASE. The instructions specified by that WHEN statement are then executed
and control passes to the first statement following the ENDCASE, even if
more matches exist in subsequent WHEN statements, as yet untested. This
is important to understand. You could not use this example, as it stands,

25

BASIC V

to test for two buttons being pressed together. Hence, however many
WHEN statements are specified in a CASE construction, only one, if any, will
be executed. Of course, a CASE statement may produce no match at all.

The WHEN statement can specify more than one value, and these are
separated by commas. With the mouse, pressing two or more buttons
together produces values which are the sum of the values that would have
resulted from pressing the same buttons individually. Adding the
following line could cater for any two or three buttons being pressed by
mistake:

WHEN 3,5,6,7: PROCerror(z)

In such a case, BASIC seeks for a match between the value of the CASE

expression and any of the values listed after WHEN. These alternatives are
simply separated by commas.

It is also possible to include an OTHERWISE clause in a CASE statement. This
must follow the last WHEN statement in a list and stipulates the action to
be taken if no specific match occurs. For example, we could package up
our whole mouse routine as follows:

REPEAT
MOUSE x,y,z
CASE z OF

WHEN 4: PROCselect
WHEN 2: PROCmenu
WHEN 1: PROCadjust
WHEN 7: exit%=TRUE
OTHERWISE PROCerror(z)

END CASE
UNTIL exit%

There is now a loop which repeatedly returns information about the
position of the mouse pointer and the state of the mouse buttons.
Appropriate action is determined by a CASE statement in response to the
buttons pressed.

When using the CASE statement, CASE ... OF must be the last item on a line of
BASIC, while WHEN, OTHERWISE and ENDCASE must be the first objects on a
line. Note also that a colon is essential to terminate the list of possible
matches in a WHEN statement, though no colon is required after
OTHERWISE (as there is no list here).

It is worthwhile to consider the workings of CASE statements further, as
there are alternative ways of using such statements which may not be

26

Control Structures

immediately obvious. The CASE statement is concerned with finding a
match between the values of expressions, where the term expression also
includes constants. Thus (bA2-4"'a"'c) is an expression, so is z and so is 5.2
(with this interpretation). One of the expressions to be matched, the key
expression if you like, is specified after CASE, and other lists of expressions
are given after each WHEN. In the examples so far, the key expression has
been given as a simple variable, and the WHEN expressions as constants.

Furthermore, expressions may produce a numeric value, a string value or
a logical value. For example, a typical command-driven system for a file
handling program might have the following structure:

REPEAT:exit%=FALSE
command$=FNrnenu
CASE command$ OF

WHEN "OPEN": PROCopen file
WHEN "CLOSE": PROCclose file
WHEN "ADD": PROCadd record
WHEN "DELETE": PROCdelete record
WHEN "UPDATE": PROCupdate - record
WHEN "DISPLAY": PROCdisplay record
WHEN "EXIT": exit%=TRUE -
OTHERWISE PROCerror

END CASE
UNTIL exit %

It is natural to think of the WHEN statements as specifying instances of the
CASE ... OF expression, but it is quite possible to turn it round, so that this
becomes a (single) instance of a WHEN expression. Consider the following
routine:

MOUSE x,y,z
CASE TRUE OF

WHEN FNin (x, y, z, 120, 100, 200, 100) : PROCload
WHEN FNin (x, y, z, 400, 100, 200, 100) : PROCsave
WHEN FNin(x,y,z,680,100,200,100): PROCedit
WHEN FNin (x, y, z, 960, 100, 200, 100) : PROCexit

END CASE

Assume that the screen display consists of four boxes across the foot of the
screen labelled LOAD, SAVE, EDIT and EXIT. FNin is a function with seven
parameters. The first three are the position of the mouse pointer and
status of the mouse buttons. The other four are the x and y co-ordinates of
the bottom left-hand corner and the width and height of a rectangular
area on the screen. FNin returns a logical value of TRUE if the mouse
pointer is within the specified area with the select button depressed. The

27

BASIC V

CASE statement given above is one way of detecting which part of the
screen is being pointed to before taking appropriate action.

The CASE construction is an important addition to BASIC v, one that will do
much to avoid some of the more tortuous programming previously
required to meet the need for a multiple-choice structure. It will also do
much to enhance further the reputation of BBC BASIC. It does require the
programmer to exercise careful consideration of its use, both in getting
the syntax correct and in applying its logic in the most effective way. With
practice you should find that CASE ... OF becomes a frequently used feature in
your programs.

28

5 : Procedures & Functions

In contrast to many implementations of BASIC, the BBC version of this
language has always provided good procedure and function handling,
including multi-line definitions and, most importantly, parameter
passing. Indeed, programs written in BBC BASIC are normally
characterised by their frequent use . of both of these structures, leading to
highly logical and readable programs. That BBC BASIC encourages such a
structured approach to programming is to be commended, and in this
respect at least puts this version of BASIC on a par with such languages as
C and Pascal.

However, as with some of the other better features of BBC BASIC, the use of
procedures and functions has still been limited in certain respects. In
particular, parameters could only be used to pass values to a procedure or
function, and not for the return of values to the calling program (although
a function can, separately, return a single value). Secondly, there has been
no provision at all for passing arrays as parameters. Both of these
restrictions have disappeared in BASIC v, and a number of other
enhancements, particularly with regard to the use of libraries, further
improve the power and flexibility of functions and procedures in BBC
BASIC. There have also been substantial improvements affecting error
handling within procedures and functions, but these are dealt with
separately in Chapter Six.

Passing Parameters
Let us consider a very simple example of a procedure or function and see
how this benefits from the enhancements to parameter passing in BASIC v.
Suppose we want to order the values contained in two variables.
Previously, the only way of encoding this would have been to write a
function to determine if the two values should be swapped, and then to re
assign the values if necessary. For this assume the two numbers to be re
ordered are contained in variables A and B, and that we wish the larger to
be in A and the smaller in B:

29

BASIC V

IF FNswap(A,B) THEN temp=A:A=B:B=temp

DEF FNswap(A,B)
IF B>A THEN =TRUE ELSE =FALSE

It is impossible to keep to a strict use of parameters and LOCAL variables,
and perform the swap entirely within the procedure or function definition,
because of the inability to return more than a single value, and that only
with a function. As a result, the coding above is restricted to ordering the
contents of the two variables A and B only. In fact, because of these
limitations, the above example might as well be written as:

IF B>A THEN temp=A : A=B:B=temp

but this is quite specific to the variables A and B. In BASIC v we could
rewrite this all as a procedure as follows:

PROCswap(fredl,fred2)

DEF PROCswap(RETURN A,RETURN B)
IF B>A THEN SWAP A,B
ENDPROC

The procedure definition is entirely self-contained and may be used to
swap the contents of any two variables, as with fredl and fred2 in the
example call. Note the use of the new SWAP instruction to simplify
matters.

The difference is achieved by the use of the keyword RETURN when
defining the procedure. Without this, the only option previously, BASIC
treats any formal parameters given in the definition of a procedure or
function as being strictly LOCAL to that definition. Thus, when such a
function or procedure is called, memory is allocated to those variables and
the corresponding values, supplied as part of the call, are assigned to
them. This explains why it is possible to make assignments to variables
defined as formal parameters in a procedure or function definition. Within
such a definition, the formal parameters are treated like any other
variables declared as LOCAL. On exit from the procedure or function, all
such variables, and their values, are lost.

When the keyword RETURN is used in specifying a formal parameter, no
local allocation of storage takes place, apart from variables explicitly
declared as LOCAL, when the routine is called. Instead, the procedure, or
function, is passed a reference to the location of the corresponding data
item. Any reference within the procedure definition is directed to the
original data item as set up by the calling program. Any assignment to

30

Procedures and Functions

such a formal parameter will, therefore, replace the original data with the
new value.

There are two points to note when calling a procedure or function which
uses RETURN to define parameters in this way. You cannot then specify
actual values as parameters in the procedure or function call - only
variables will do. This follows logically from the way in which RETURN

parameters are treated. Without a variable there is no reference to pass to
the procedure or function.

The second point is that variables passed as RETURN parameters must
have been implicitly declared, by assigning them some value, before
including them in a procedure call. For example, we might wish a
procedure to return the largest and smallest values found in an array (see
also Chapter Seven for more relevant information on arrays). Such a
procedure might be defined as:

DEF PROCmaxmin(data(),RETURN max,RETURN min)
LOCAL i,n : n=DIM(data(),1)
max=data(l) : min=max
FOR i=2 TO n
IF data(i)>max THEN max=data(i)
IF data(i)<min THEN min=data(i)
NEXT i
ENDPROC

Note the use of DIM to determine the size of the array passed to the
procedure. This technique is discussed more fully in Chapter Seven. If such
a procedure were to be called with a line such as:

PROCmaxmin(height(),high,low)

in order to find the highest and lowest of a set of heights, then it would
need to be preceded by a line similar to:

high=O:low=O

in order to make the two variables high and low 'known' to BASIC. The
values assigned to these variables are quite immaterial, as they are re
initialised within the procedure definition. The purpose is merely to force
BASIC to include them in its list of known variables prior to making the
procedure call. Arrays (see below) must likewise be dimensioned before
being used as parameters to procedures and functions. If these steps are
omitted then an error message ("No such variable") will result.

31

BASIC V

Programmers using BBC BASIC v now have two choices as far as parameter
passing to functions and procedures is concerned, call by value (the old
method) and call by reference (the new method). Both have their place in
the programmer's repertoire. A clear understanding of the workings and
differences between the two methods is, however, essential to avoid
subsequent problems in their use.

Passing Arrays as Parameters
In BASIC v, not only has parameter passing to procedures and functions
been greatly improved as already explained, but arrays may now also be
specified as parameters. As in other instances where complete arrays are
referred to in BASIC, an array is specified by its name followed by empty
parentheses, thus:

PROCsort(data())

Not only that, but by using the new applications of the DIM statement (see
Chapter Seven), a procedure or function can itself determine the number
of dimensions and the size of each dimension of any array passed to it as a
parameter.

As an example, consider a simple procedure to sort the elements of an
array (assumed one-dimensional) into ascending order. This could be
coded as follows:

DEF PROCsort(data())
LOCAL i,j,n:n=DIM(data(),1)
FOR i=n-1 TO 1 STEP -1
FOR j=l TO i
PROCswap(data(j+l),data(j))
NEXT j : NEXT i
ENDPROC

This procedure uses just a simple bubble sort, which could certainly be
improved upon, but it does illustrate the BASIC elements involved. All
variables used within the procedure have been declared as local so that
the procedure is quite independent. The procedure starts by assigning the
size of the array to be sorted to the variable n using the DIM statement to
obtain this information. The nested FOR. .. NEXT loops then perform the sort,
using the procedure PROCswap described previously, to compare together
consecutive elements in the array.

32

Procedures and Functions

Following our earlier discussion on calling by reference, you might have
expected to see the keyword RETURN included in the procedure definition
to so define the array parameter. In fact, arrays in BASIC v may only be
called in this way, and RETURN is not needed, though it does not generate
an error if included. Acom says that to call arrays by value could involve
large amounts of memory being allocated for local storage requirements,
and that a significant amount of time might be needed for copying the
contents of the array specified into the local array specified by the formal
array parameter.

If you do need to write a procedure or function with an array parameter
such that the contents of any array passed will not be altered, you will
need to make a separate copy before calling the necessary routine and use
the unaltered version on exit. Thus,_ for example:

temp() =A()
PROCsort(temp())

After executing these two lines, the array A would remain unchanged,
while the array temp contains the same data but in ascending order.

Local Arrays
In addition to the facility for passing arrays as parameters, they may now
also be declared local to a procedure or function, as with other variables.
The array must first be declared as local and then dimensioned. There is,
however, nothing to stop the array being dimensioned dynamically when
the procedure or function is called, maybe using a value passed as a
parameter, or by determining the size of another array also passed as a
parameter (see Chapter Seven). For example:

LOCAL localarray()
DIM l ocalarray(DIM(A(),1),DIM(A(),2))

would declare 'localarray' as a two ·dimensional local array with the same
dimensions as an array A, presumed passed as a parameter.

The use of local arrays also provides an alternative solution to the
problem of passing an array, as a parameter, to a procedure or function in
such a way that the contents of the array passed remain unchanged. The
procedure definition could dimension a local array and then copy the
contents of the array passed, as a parameter, into this local copy. For
example, a procedure definition might begin:

BV-C 33

BASIC V

DEF PROCcalculate(data())
LOCAL temp()
DIM temp(DIM(data(),1))
temp() =data()

The procedure would then continue to process the local copy, leaving the
original array unaffected. Remember though, that on exit from the
procedure, the entire contents of the local copy will be lost, so this is not a
suitable solution in all situations.

Since arrays can rapidly eat up memory, it is always sensible to dimension
them dynamically where feasible, and to keep the use of arrays,
particularly local arrays, to a minimum. Just consider the amount of
memory that would be used by a recursively defined procedure repeatedly
declaring a two dimensional real array, even one just 10 x 10.

Procedure and Function Libraries
The other main area where handling of procedures and functions has been
improved in BASIC v, is in the introduction of a library facility. Once any
specified procedure or function library (and both procedures and functions
may be included in any library file), has been loaded, any function or
procedure calls which cannot be satisfied from within the main program
are checked for within the currently loaded library or libraries.

Using libraries has a number of advantages. There are no worries about
line number clashes when library procedures and functions are used. Also,
keeping a set of routines as a single file, which can be loaded just by
referencing its name, saves all the bother of individually loading and
merging previously written routines into a new program.

Of course, this convenience has to be paid for in the memory space used up
by each loaded library. Because you will seldom use all the procedures or
functions in any one library, more memory will be used than if you had
individually selected and included just those routines which the program
needs.

A BASIC library is simply a saved BASIC program containing only procedure
and function definitions, though REM statements may also be included for
documentation. Because of the potential for wasting memory space, you
are recommended to keep your library files relatively small. It is also
essential that you document your library files to make clear what

34

Procedures and Functions

procedures and functions they contain, what their names are and what
parameters they require. It is also highly desirable to make such routines
as self-contained as possible, by full use of parameter passing and the use
of local variables, to avoid any future conflicts or unexpected side effects.

There are two separate commands.which may be used to load a library,
and the precise action taken by each is different. The two commands are
INSTALL and LIBRARY, and in each case the command is followed by the
name of a library, enclosed in double quotes, or a string variable to which
a library name has previously been assigned. For example:

INSTALL "Utilities2"
LIBRARY library$

The INSTALL command will load any specified library at the ' top of
memory, and move BASIC's stack and the value of HIMEM down. Because of
this, INSTALL cannot be used when there is anything on the stack (ie, from
within a procedure or function, or inside any kind of loop). In addition,
installed libraries may only be removed by quitting BASIC. Libraries loaded
with the INST ALL command are relatively permanent in nature, and are
best loaded at the very start of a program, or, even better, with a finished
application, by including the INSTALL command in an appropriate boot file.

The LIBRARY command, on the other hand, loads a specified library
immediately above the program · itself, effectively using part of the
program's variable storage area. As such, libraries loaded in this way are
deleted by any of the commands which clear this area (CLEAR, NEW, RUN
etc.). However, the LIBRARY command can be used more dynamically than
INST ALL, including its use within procedures and functions which are
themselves contained in a library.

A base library may contain a small number of procedures, each of which,
when called, loads a further applications-oriented library of additional
functions and procedures. This makes for more economical use of
memory, but all libraries to be loaded, whether using INSTALL or LIBRARY,
must be accessible via the current filing system. For large applications a
hard disc would be most useful.

There are some minor constraints on the use of procedure and function
libraries. In particular, they should avoid any line number references as in
GOTO or RESTORE. Any such references which are included, will be taken as
referring to lines in the 'main' program, with potentially disastrous

35

BASIC V

consequences. References to variables not defined as parameters or local
to the procedure should also be avoided.

As a practical aid, the LVAR command will now also show what libraries
have been loaded into memory. It does this by listing the first line of each
library, and it is therefore highly desirable to make this a REM line
containing the library name and any other relevant information. This will
then serve to document the library file.

Dynamic Loading of Procedure
and Function Libraries
BASIC v under the RISC OS Operating System has been further extended to
allow procedure and function libraries to be loaded dynamically on
demand. The way to implement this in any program is to declare a string
array near the start of the program, and assign to this the names of the
relevant libraries (starting with the first element of the array). The system
can then be initialised by using the OVERLAY command to specify the name
of the array being used as an overlay index. For example:

DIM library$ (8)
library$(l)="Mathslib.hypl"
library$(2)="Mat hslib.hyp2"
library$(3)="Mathslib . stat sl"
library$(4)="Mathslib . stats2"
OVERLAY library()

When BASIC encounters the OVERLAY command, it reserves an area of user
RAM large enough for the biggest library stored in the specified index
array. From then on, when a procedure or function is called, BASIC will
first search the current program, then any LIBRARYs, then any INST ALLed
libraries, and finally any OVERLAY libraries starting with the OVERLAY
area. If the procedure or function called is in an OVERLAY library, then this
will be loaded dynamically into the overlay area at that time. Clearly, all
OVERLAY libraries must be accessible when running programs using this
command.

Because of the action taken by BASIC when the OVERLAY command is
encountered it is not possible to change the contents of the index array
later, though further library names can be added to the list, provided none
of the associated libraries is larger than any originally included.

36

6 : Error Handling

In the past, most BASIC programmers have largely ignored the error
handling provided by BBC BASIC, with the exception of a few instances such
as trapping ESCAPE and some disc errors. The reason for this state of
affairs is that any error trapped by BASIC caused the stack to be zeroed,
with a total consequent loss of all stored information relating to functions,
procedures and loops of any kind. Given the highly structured nature of
most programs written in BBC BASIC, the chances that a program will be
executing a function or procedure, or be within a loop, when an error
occurs, are likely to be quite high.

As an example, BBC BASIC will detect any attempt to divide by zero, and
generate a corresponding error. Because of the problems resulting from
the use of error trapping, most programmers cater for this possibility
themselves by checking for a zero (or very small) divisor before executing
a divide operation.

BASIC v now provides additional error handling facilities which avoid all
the previous problems. At any point in a program, a local error trap can be
established, saving the pointer to the previous error-trapping status on
the stack. Should an error occur, the current error-handling routine will
be invoked with no loss of stack information. Once a routine, for which
there is local error handling, has been executed, the pointer to the
previously effective error trapping status can be retrieved from the stack
and reinstated as the current error handling routine.

Using these facilities, truly hierarchical error-handling systems can be
readily established. Although local error handling may be incorporated at
any point within a program, it is clearly ideally suited to error handling
within procedures and functions. Given the highly structured nature of
most BBC BASIC programs, global error trapping (to handle ESCAPE for
example) might be established early in a program, with each function and
procedure containing its own error handling routine whenever
appropriate.

37

BASIC V

It is important to realise, however, that when any local error handling
routine is active, all errors will be passed to that routine, including those
which we might ideally wish to be handled by a more global routine. It is
only too easy to forget this and assume that a local error handling routine
will only handle specific local errors.

Local Error Trapping
Let's look at what the new instructions are in BASIC v and then consider
how best to use them. The original ON ERROR statement remains as before
and, as before, the occurrence of any error corrupts the stack as already
described. A new statement, ON ERROR LOCAL, with the same syntax, is
now provided, which does not corrupt the stack in the event of an error.

Furthermore, LOCAL ERROR may now be used to save the existing error
trapping status on the stack before establishing a local error-handling
routine. RESTORE ERROR, placed at the end of a routine or section of code,
will restore the previously saved error status. In practice, RESTORE ERROR

is not strictly necessary on exit from a procedure or function, but it will
cause no problems if it is included.

Suppose, as an example, we want to write a procedure which will plot the
graph of a function specified as a string. A complete program including
such a procedure could be written as follows:

Listing 6.1 Plot program with no error trapping.

10 REM >Chap6-1
100 MODE 12
110 REPEAT
120 INPUT F$,X,Y,I
130 PROCplot(X,Y,I,F$)
140 G=GET:CLS
150 UNTIL FALSE
160 END
170

1000 DEF PROCplot(Ox,Oy,inc,f$)
1010 LOCAL x,y
1020 MOVE O,Oy:DRAW 1279,0y
1030 MOVE Ox,1023:DRAW Ox,0
1040 ORIGIN Ox,Oy:a=-Ox/100:b=(1279-0x)/100
1050 MOVE -2*0x,O
1060 FOR x=a TO b STEP inc
1070 y=EVAL(f$)
1080 DRAW lOO*x,lOO*y

38

1090 NEXT x
1100 ORIGIN 0, 0
1110 ENDPROC

Error Handling

The procedure has four parameters, the position of the origin of the graph
on the screen (assuming that the origin is initially in its default position at
the bottom left-hand corner), the increment in x to be used when plotting,
and the function (of x) itself. The procedure draws in the x and y axis,
moves the origin to its new position and then plots the graph using a
FOR. .. NEXT loop. The local variables a and b are the calculated start and
end points on the x axis relative to the new origin. Before plotting of the
graph begins, a move is made beyond the left-hand edge of the screen
ready to commence plotting the graph, using DRA w. On exit from the
procedure, the origin is returned to its default position. Incidentally, note
the use of the new statement ORIGIN, dealt with more fully in Chapter
Nine. ·

There are many alternative ways in which this procedure could have been
written, but this version will suffice for our needs. If we call the
procedure, having first cleared the screen in a suitable mode, with the
following procedure call:

PROCplot(625,512,0.125,3*SIN(x)+SIN(3*x))

then the graph will be correctly, and quickly, drawn. Note the lower case
'x' to fit in with the procedure definition. If, however, we try this function:

PROCplot(625,512,0.25,10*(SIN(x)/x))

then the error message "Division by zero ... " will result when the graph
reaches the origin. The procedure can trap this situation by using local
error trapping. What then happens is up to the programmer - we'll
assume we just skip over the contentious value and go on to the next one.
The revised procedure appears as listing 6.2.

Listing 6.2 Revised plot procedure with local error trapping.

1000 DEF PROCplot(Ox,Oy,inc,f$)
1010 LOCAL x,y
1020 LOCAL ERROR
1030 MOVE O,Oy:DRAW 1279,0y
1040 MOVE Ox,1023:DRAW Ox,O
1050 ORIGIN Ox,Oy : a=-Ox/100:b=(1279-0x)/100
1060 MOVE -2*0x,O
1070 FOR x=a TO b STEP inc
1080 ON ERROR LOCAL x+=inc

39

BASIC V

1090 y=EVAL(f$)
1100 DRAW lOO*x,lOO*y
1110 NEXT x
1120 ORIGIN 0,0
1130 RESTORE ERROR
1140 ENDPROC

It is essential that LOCAL ERROR be the last thing to be declared LOCAL in a
procedure or function definition. The RESTORE ERROR as the penultimate
line is included for completeness, but, as already mentioned, it is not
essential here. The ON ERROR LOCAL statement has been carefully
positioned within the FOR. .. NEXT loop. Should any error occur, the loop
counter x is incremented by the code specified by ON ERROR LOCAL, and
execution then continues with the statements immediately following that
one. The effect in this case is to force the loop counter on by one increment.

This is satisfactory provided, of course, that the only error to occur is the
"Division by zero" specifically catered for. Any other error state, such as a
syntax error or pressing ESCAPE, will have unexpected consequences. The
procedure will respond just as though a "Division by zero" error had
occurred. One possibility is to place the LOCAL ERROR and RESTORE ERROR

instructions as brackets around the critical section of code only, but this
has little aesthetic appeal and would tend to slow down execution
without offering an entirely foolproof solution.

A better way might be to define an error-handling function to contain all
the separate local error-handling routines. A parameter would specify
which error-handling routine was required. Such a function could then
cater readily for syntax errors or pressing ESCAPE, while using a function
would allow a logical value to be returned which could be TRUE if the
expected error had occurred, and FALSE otherwise. A procedure could also
return a value using the RETURN keyword. It would then be up to the host
procedure to determine how to respond to this information. As you will
appreciate, once you start experimenting with local error trapping, the
main problem lies in determining the sequence to be followed in the event
of an error, particularly if the requirement is to continue from the point at
which the error occurred. Hence the reason for the position of the ON

ERROR LOCAL statement in the examples.

Here's how this approach might work out in our plotting example:

40

Listing 6.3 Final plot procedure with error function.

1000 DEF PROCplot(Ox,Oy,inc,f$)
1010 LOCAL x,y,err%:err%=TRUE
1020 LOCAL ERROR
1030 MOVE O,Oy:DRAW 1279,0y
1040 MOVE Ox,1023:DRAW Ox,O
1050 ORIGIN Ox,Oy:a=-Ox/100:b=(l279-0x)/100
1060 MOVE -2*0x,0
1070 FOR x=a TO b STEP inc
1080 ON ERROR LOCAL err%=FNerror(l)
1090 IF err% THEN
1100 y=EVAL(f$)
1110 DRAW lOO*x,lOO*y
1120 ELSE
1130 x=b
1140 ENDIF
1150 NEXT x
1160 ORIGIN 0, 0
1170 ENDPROC
1180
1190 DEF FNerror(error)
1200 ON ERROR OFF
1210 LOCAL flag%:flag %=FALSE
1220 CASE error OF
1230 WHEN 1: IF ERR=18 THEN x+=inc:flag%=TRUE
1240 ENDCASE
1250 IF NOT flag % PRINT REPORT$;" at line ";ERL
1260 =flag%

Error Handling

The main procedure, PROCplot, now uses an additional local variable
(err%). Initially TRUE, this variable is assigned the value returned by
FNerror in the event of any error occurring. If this is "Division by zero"
then the loop continues as normal, otherwise the program forces an
immediate termination of the loop and a return to the calling program.

The function, FNerror, uses a CASE structure which can be very easily
extended during program development as further local error traps are
required. Clearly, this is a much lengthier solution than our original, quite
simple, local error handling, but in the development of any substantial
program, this systematic approach will almost certainly prove more
effective than a variety of ad hoc arid overlapping local error traps.

Notice also, in the function FNerror, the use of a new pseudo-variable in
BASIC v, REPORT$. This contains a string equivalent to the error message
which BASIC would display if handling errors directly.

41

BASIC V

A further change has been made to the standard error handler. This now
resets @% so that any error messages and line number references are
correctly formatted, but it then restores any previous setting of this
variable which you may have made.

Local DATA
Under RISC OS, BASIC v allows the current DATA pointer to be saved to the
stack and subsequently retrieved in a manner similar to that used with
local error trapping. To save the current DATA pointer, use:

LOCAL DATA

while the previous value can be restored with:

RESTORE DATA

LOCAL DATA and RESTORE DATA may be used anywhere within a program,
but their main use is likely to be in procedure and function definitions,
particularly those included in libraries. As with LOCAL ERROR, exit from a
procedure or function will automatically restore the saved DATA pointer.
If LOCAL DATA is used in this way, it must be the last item declared as LOCAL

within the procedure or function definition except for LOCAL ERROR, which
must always be the last of all.

Thus procedure and function definitions which contain their own DATA

statements can now avoid upsetting the DATA pointer in the calling
program. Note, that in the procedure or function definition, using:

RESTORE 0+

will set the DATA pointer to the first item of DATA included within the
procedure or function definition.

New ERROR Keyword Usage
The keyword ERROR now has an additional function within BASIC. It allows
you to specify your own error numbers and corresponding error
messages. The syntax takes the form:

ERROR <error number>,<error message>

For example, we might write:

ERROR 999,"Too many characters in name"

42

Error Handling

When such a line is executed, BASIC prints a normal style error message but
using the string specified. The error number given in the ERROR statement
is assigned to the pseudo-variable ERR. Thus the example above would
produce a message:

Too many characters in name at line

Revised Error Numbers and Messages
The User Guide lists all the possiQle error numbers and corresponding
error messages. Many of these have been revised or are additions for
BASIC v. Note that there are many instances where several different error
messages all have the same error number. BASIC chooses which error
message to generate depending upon the error number and its context.
Note that there are also some differences between Arthur 1.2 and RISC OS
which are listed below.

0 Line too long
0 Incorrect in-core file description
2 Assembler limit reached
3 Duplicate register in multiply
6 Type mismatch: numeric array needed
6 Type mismatch: string array needed
10 Arrays cannot be redimensioned
11 No room for this DIM
11 No room for this dimension
11 Attempt to allocate insufficient memory
27 Missing (·
37 No room for function/procedure call
42 DATA pointer not found on stack for RESTORE DATA

48 OF missing from CASE statement
52 Can' t install library
52 Bad program used as function/procedure library
52 No room for library

43

7: Matrices

BASIC v adds significant matrix handling facilities to BBC BASIC. These not
only result in much shorter and simpler coding when arrays or matrices
are to be manipulated in any way, but are significantly faster in operation
than equivalent FOR. .. NEXT loops. For example, initialising all the elements
of a three-dimensional array is some 70 times faster in BASIC v by this
method. This is indicative of how much time is spent by BASIC in repeatedly
interpreting FOR. .. NEXT instructions rather than doing useful work.

Before investigating all this new power, let's start by clarifying the use of
the terms array and matrix. An array is essentially a convenient method of
storing a set of data items which involves giving a name to the set as a
whole and referencing each data item by its position within the set. Arrays
are stored as simple lists, or as two-dimensional arrays consisting of rows
and columns, or as arrays of more than two dimensions. In BASIC v, arrays
may be declared to store integer or floating point numbers, or strings.

Matrices are a mathematical concept derived from a study of algebra, and
are often associated with such tasks as the solution of linear simultaneous
equations. A matrix is normally two-dimensional consisting of rows and
columns, but may also consist of a single row or a single column. Within
BASIC v, matrices are, therefore, most conveniently stored as arrays, and
effectively the whole-array operations may then be used to manipulate
matrices.

It is not the purpose of this book to discuss matrix operations per se, or
their application, but some explanation will be included as we proceed.
Matrices are essentially concerned with numbers, and in BASIC are
represented by integer or floating point arrays as appropriate. However,
where it makes sense, matrix operations may also be applied to string
arrays. For example, adding two string arrays together will result in a
new array in which each string element consists of the two original string
elements, in the same positions, added or concatenated together. ·

When a matrix operation involves two matrices, then there are usually
constraints on the numbers of rows and columns in them. In most cases,

44

Matrices

both matrices must have the same number of rows and columns, though
this is not always true, and other constraints sometimes apply. These will
be dealt with in relation to each matrix operation.

Furthermore, these constraints apply to the size of an array as
dimensioned, and not to the number of elements currently in use. For
example, although BASIC always dimensions arrays with the first element
in position zero, many programmers choose to ignore this and assume
that the first element is in position one. Similarly, in a general application,
an array may be dimensioned for the largest case likely to arise, but in
practice often holds less data, and is processed accordingly. BASIC applies
matrix operation to all elements, but no problems should arise if less than
all elements are in use, provided this is applied consistently. Don't ignore
the zero elements in one array, use them in another, and expect a matrix
operation to give a sensible answer every time!

Introducing Whole-Array Operations
In whole-array operations, arrays are referenced by giving the name
followed by the opening and closing parentheses thus:

Total () Name$ () Freq% ()

The DIM statement, as well as being used to dimension arrays, can also be
used to provide information about an array previously dimensioned. By
specifying the name of an array, DIM will return the number of dimensions
with which the array was dimensioned, while specifying the name and a
dimension will give the size of that dimension. For example, if an array
were dimensioned as:

DIM sales(20,50)

then:

DIM(sales ())

would return the value '2';
DIM(sales (), 1)

would return the value '20', and:
DIM(sales(),2)

would return the value '50'.

45

BASIC V

Used in this way, DIM returns a numeric value from 1 upwards, and may
be used in any situation where a numeric variable or value is acceptable.
The information supplied by this use of DIM is very useful if it is necessary
to apply checks to matrices prior to executing any matrix operation.
Perhaps its greatest benefit is in procedures and functions which may now
specify arrays as parameters. A procedure definition could use DIM as
described above to determine both the number of dimensions and the size
of each dimension of any array passed to it. This provides valuable
flexibility when writing functions and procedures to manipulate arrays
passed as parameters, already covered in some detail in Chapter Five.

Whole-Array Operations: Constants
Although arrays are always initialised to zero, or to null strings, it may be
necessary to assign a different value to every element in an array. This is
very simple, for example:

data()=l bitmap%()=FALSE data$()=STRING$(30,CHR$32)

Under RISC OS it is also possible to assign different values to each element
of an array by giving a list of suitable values or expressions. Thus:

data()=l,2,3,4,5,6,7,8,9

Similarly, all the elements of an array may be incremented or
decremented using the new '+=' or '-=' operators, as in:

data() +=1 index%()-=(inc+l)

The syntax here can be confusing. Where a constant value is to be assigned
to all the elements of an array, it is essential that this be enclosed in
parentheses if it is an expression rather than as a single value or variable.
However, when incrementing or decrementing the elements of an array,
parentheses are not essential. For example:

data()=(inc+l) data()+=(inc+l) data()+=inc+l

are all acceptable, but:

data() =inc+l

is not. More confusingly, in the latter case the error message generated is
"Type mismatch: array needed". Being aware of this will save endless
frustration later.

46

Matrices

You can also copy all the elements from one array to another and negate
all the elements of an array. For example:

New_Data()=Old_Data() or map% ()=-map% ()

but you cannot logically negate all the elements using NOT.

Arrays: Operation on with a Constant
The next array operations to consider are those where each element of an
array is to be operated on with a constant. The operations available are
addition, subtraction, multiplication and division. The resulting array may
then be assigned to a new array, or used to replace the elements of the
original one. We can also operate on a constant with an array element, or
vice versa. With addition and multiplication (both commutative) the order
makes no difference to the result, but clearly does so with subtraction and
division. Remember, each and every element will be treated in exactly the
same way. Examples are:

data()=data()+inc data$()=data$()+","

NetPrice()=GrossPrice()*l.15

Reciprocal()=l/Integer()

Note the string example - any matrix operation may be used on string
arrays if this makes sense. In all the above examples, where two or more
arrays are involved, they must all be dimensioned the same way (ie, the
same number of dimensions, and the same size for each dimension). This
applies in all other examples as well, except for matrix multiplication.

Binary Operations ·on Arrays
The same operations of addition, subtraction, multiplication and division
may be used on the corresponding elements of two arrays. Thus we could,
for example, write:

Totals()=datal()+data2()

Profit()=Income()-Cost()

Value()=Amount()*Exchange_Rate()

Record$()=Record$()+New_Field$()

All these operations, including that of multiplication as specified by the '""
operator, work on corresponding pairs of elements. The resulting 'values'

47

BASIC V

may then be assigned to a new array or used to replace the elements of
either original array.

In addition, BASIC v also provides matrix multiplication using the '.'
operator. This is quite different to the multiplication of corresponding
elements as mentioned above. This mathematical operation can only be
applied to two-dimensional arrays. It works as follows. The first row of
the first matrix is used with the first column of the second matrix. A new
element is then formed from the sum of the products of the corresponding
pairs of elements. This is repeated for each row of the first matrix and
each column of the second. For example:

since 14 = (3*2 + 4*2) 9 = (3*-1 + 4*3)

0 = (1*2 + -1*2) -4 (l*-1 + -1*3)

Because of the way in which matrix multiplication is defined, the number
of columns of the first matrix must correspond to the number of ro.ws of
the second. Furthermore, the array to which the results of a matrix
multiplication are assigned must have the same number of rows as the
first matrix, and the same number of columns as the second. For any three
numbers i, j, and k, the operation of matrix multiplication of the form:

C() =A() . B()

is only valid if the three arrays A, B, and c have been dimensioned as:

DIM A(i,j),B(j,k),C(i,k)

Note that for a two-dimensional array, the first subscript is the row
number and the second subscript the column number. The DIM statement
may be used as indicated before to perform the necessary checks. For
example, the matrix multiplication given above is valid only if:

DIM(A())=2 AND DIM(B())=2 AND DIM(C())=2 AND

DIM(A(),2)=DIM(B(),l) AND

DIM(C (), 1) =DIM(A(), 1) AND DIM(C (), 2)=DIM(B(), 2)

That is to say, if all three arrays have two dimensions, and that the
number of columns of the first equals the number of rows of the second,

48

Matrices

and that the third array (C()) has the same number of rows as the first and
the same number of columns as the second.

There are two special cases of matrix multiplication which are allowed
for in BASIC v. As well as the multiplication of two two-dimensional
matrices as described, a row matrix may multiply a two-dimensional
matrix, and a two-dimensional matrix may multiply a column matrix, the
result being a further row matrix or a further column matrix respectively.
Now this could be done with two-dimensional matrices in which either
i=l or k=l (referring above). However, BASIC v will also allow explicit
one-dimensional arrays in this context. Thus:

C () =A () . B ()

is valid if the arrays are dimensioned as:
DIM A(j),B(j,k),C(k)

or alternatively:

DIM A(i,j),B(j),C(i)

row * matrix

matrix * column

Modulus Function
RISC OS also provides a new matrix function in the form of MOD. When
applied to a numeric array this returns the square root of the sum of the
squares of the individual elements. Thus, for example:

normal()=vector() /MODvector()

Summation
In addition to the matrix operations described, BASIC v provides a matrix
function SUM, which may be used to return the sum of all the elements in
an array, or the concatenation of all elements of a string array. Therefore:

Total_Price = SUM(Price())

In the case of a string array, the elements are summed row by row from
left to right, as they are for a numeric array.

Under RISC OS, BASIC v provides a second summation function, SUMLEN,
which will return the sum of the lengths of all the strings in a string array.

BV-D 49

BASIC V

General Comments
The whole-array operations provided by BASIC v are very powerful, and
should be used, because of their speed of execution, in preference to any
other alternatives. They also lend themselves, as you may appreciate from
the examples here, to the implementation of spreadsheets and similar
tasks. However, there are limitations, and once you start using arrays in
this way it is easy to fall into the trap of putting them in situations for
which an array is not valid. In general, you cannot create expressions.
involving arrays. For example:

Total()=(Material()+Labour())*l.15

would be rejected. Likewise, when using any of BASIC's functions you
cannot substitute an array for a variable. Such statements as:

Record$()=STR$(data())

or anything similar are not allowed. The solution, in the case of the
former example, is to express the statement in two separate steps:

Total()=Material()+Labour()

Total()=Total()*l.15

In the second case there is no alternative but to use an explicit FOR. .. NEXT

loop to achieve the desired result:

FOR I %=0 TO DIM(data(),l)
Record$(I %)=STR$(data(I%))
NEXT

This means that your coding must explicitly indicate the number of
dimensions being used, even if not the size. Because this reduces the
flexibility of coding as well as increasing execution time, I do recommend
that you try to avoid the need to use functions with array elements unless
it is essential, particularly when defining functions and procedures.

50

8 : Using Colour

One of the major new features of the Archimedes is its provision of a
palette of 4096 different colours. This provides an enormous choice,
particularly when compared with the six colours, plus black and white,
available previously on the BBC micro. The further eight flashing colours
cannot really be considered as genuinely different colours.

Of course, nothing is quite as good as it seems at first sight. The same is
true of the use of colour on the Archimedes! You cannot display all 4096
colours on the screen at the same time, the maximum is 256. Furthermore,
the decision by Acorn to maintain complete compatibility with the use of
colour on the BBC Micro and Master series has led to additional
complexity and confusion when it comes to dealing with the Archimedes.

There are two quite different approaches to the handling of colour on the
Archimedes. First of all we shall look at those modes (O to 7) used on the
BBC micro, and all the other modes which allow a maximum of 16 colours
on the screen at the same time. The 16 colours can be chosen to be any of
the 4096 shades of colour which the Archimedes is capable of, and the
methods of using and selecting these colours are similar to or an extension
of those used in previous versions of BBC BASIC.

Modes 10, 13 and 15 allow up to 256 colours to be displayed on the screen
at any one time, but the method of Selecting these colours is quite different
to that used in the other modes. Furthermore, it is possible to choose these
256 colours to be any from the 4096 strong colour palette, but this does
become quite complex, and you do not have the freedom to choose literally
any colours from those available.

No. of Colours Modes
2 0, 3, 4, 6, 18, 23, 25
4 1, 5, 8, 11, 19, 26
16 2, 7, 9, 12, 14, 16, 17, 20, 27
256 10, 13, 15, 21, 24, 28

Table 8.1 Maximum number of colours per mode.

51

BASIC V

Sixteen-Colour Modes
The same principles apply equally to 2, 4 and 16 colour modes, but where
any examples are mode dependent, the commonly used mode 12 with a
choice of 16 colours will be referred to. In each of these modes, the choice
of colour in the first instance is referred to in terms of a logical colour. In
mode 1, for example, these range from 0 to 3, in mode 12 from 0 to 15.
With each logical number is associated a physical colour, which is what we
actually see on the screen. The corresponding default colour assignments
are those which we have become accustomed to on the BBC micro (see
Table 8.2).

Number Colour Number Colour
0 Black 8 Flashing black/white
1 Red 9 Flashing red/ cyan
2 Green 10 Flashing green/ magenta
3 Yellow 11 Flashing yellow /blue
4 Blue 12 Flashing blue/yellow
5 Magenta 13 Flashing magenta/ green
6 Cyan 14 Flashing cyan/red
7 White 15 Flashing white/black

Table 8.2 Default colour assignments for 16 colour modes.

At any instant of time, four colours will be active. These are the current
foreground and background text colours, and the foreground and
background graphics colours. With both text and graphics, the background
colour is indicated by adding 128 to the logical colour number specified.
This is done using COLOUR for text and GCOL for graphics. Thus, with the
default colours in mode 12:

COLOUR 2

would select green for any subsequent text, while:

COLOUR 128+6

would select cyan as the new background text colour. Using COLOUR in this
way determines the foreground and background colours for any text
subsequently displayed on the screen. It does not change the colours of
text already displayed.

52

Using Colour

The position is similar with graphics, but GCOL is used instead of colour.
The GCOL instruction can have one or two arguments. If a single argument
is specified then this is the logical colour number (ie, this becomes the
current graphics colour). Therefore:

GCOL 4

would select blue as the current drawing colour, while:

GCOL 128+3

would select yellow as the new graphics background colour. Remember,
particularly with graphics, that selecting a new background colour does
not of itself change the colour of the background. A CLS or CLG command is
needed to paint a new text or graphics background, and this, of course,
wipes out anything already on the screen unless text or graphics windows
have been set up first.

This form of the GCOL command is new to BASIC v. The old form, however,
is equally valid, and specifies a plotting mode as well as a colour in the
form:

GCOL <plot action> , <logical colour>

Note also, that BASIC v has added three further variations on the plotting
action to those available previously. These are quite clearly documented in
the User Guide, or BASIC Guide (post RISC OS), under the keyword GCOL.

Changing Colours
Now that we know how to select a logical colour for text or graphics, we
need to investigate how we can change the default assignment of colours
and choose from the range of 4096 shades available. The principle is not
new, and uses the VDU19 command to associate any physical colour with a
specified logical colour. So, if we were to write:

VDU19,l,61
GCOL 1

logical colour I would become the current graphics colour, but the colour
seen on the screen as a result would be cyan, and not the default red. This
is because the VDU command has associated cyan (colour number 6) with
logical colour 1. The syntax of this form of the VDU19 command is as
follows:

VDU19,<logical colour>,<physical colour>!

53

BASIC V

Note the essential 'I' character at the end of the sequence. As an
alternative to the use of VDU19, BASIC v allows the COLOUR instruction to be
used in a similar way:

COLOUR <logical colour>,<physical colour>

but without the terminating 'I' character. In this context, COLOUR has
nothing to do with text colours alone. It is simply a way of linking a screen
colour with a logical colour number.

One point which is important here is that any change of physical colour
will affect not only any future graphics or text, but all instances of the
logical colour already displayed on the screen. Changing the physical
colour associated with the logical colour number used for the screen
background will immediately change that background colour, but without
affecting any other part of the display.

We have seen how to select a logical colour for text or graphics, and how
to change the physical colour that is visible on the screen, but so far we
have still been working within the 16 default colours shown in Table 8.2.
How do we go about accessing the 4096 colours which the Archimedes is
capable of displaying on the screen?

To do this we need to use a new variation on the VDU19 command, or the
equivalent COLOUR instruction. The syntax is:

VDU19,l,16,r,g,b

or alternatively:

COLOUR l,r,g,b

In each case, 'l' is the logical colour number (range 0 to 15 for mode 12),
and 'r', 'g', and 'b' represent the proportions of red, green and blue to be
mixed together to achieve the desired colour. Now although these values
may theoretically range from 0 to 255, colour changes only occur in steps
of 16. It is sometimes better to think of the two statements in the form:

VDU19,l,16,16*r,16*g,16*b

and alternatively:

COLOUR l,16*r,16*g,16*b

The values of 'r', 'g' and 'b' should now be in the range 0 to 15. This means
a range of 16 parts red, 16 parts green and 16 parts blue, giving the total
of 4096 shades (16 * 16 * 16). Using either of the above instructions you can

54

Using Colour

choose any of the 16 logical colour numbers (in 16 colour modes), and set it
to be any of the 4096 colours.

It is quite impractical to list all the colours which are possible even if we
could agree on the correct description of each shade. Therefore, there is a
comprehensive program, which is listed at the end of this chapter, for
mode 12 displays. This serves two separate purposes. To start with, the
main part of the program is in the form of a procedure called PROCpalette,
together with a number of other supporting procedures and functions.
The simplest way of using these procedures is to add just three lines to
make a complete program (these are already included in the full listing),
and RUN this:

100 MODE 12
110 PROCpalette(7)
120 END

The screen will show a rectangle containing the current palette. This is in
the form of three small squares showing the intensities of red, green and
blue, and a larger square showing the resulting mixed colour. The display
also shows numerically the amounts of red, green and blue being used, in
the range 0 to 15. The initial display shows brilliant white, that is
determined by the '7' parameter above, made up of 16 parts red, 16 parts
green and 16 parts blue.

The whole routine is mouse controlled. If you use the select (left-hand)
button and click on any of the three squares of red, green or blue, the
intensity of the corresponding colour will be increased by one, and the
composite colour will change as well, together with an updated numerical
display. If you move the pointer to any position outside the display panel
and click, the colour at the pointer position will be loaded into the display
panel. Any subsequent changes to that colour in the panel display will be
reflected wherever else it appears on the screen.

If you press the menu (middle) button, the panel display will be replaced by
a simple rectangle. Moving the mouse will move this rectangle around the
screen. Pressing the menu button again will re-display the panel in the
new position. Lastly, pressing the adjust (right-hand) button at any time
will exit from the procedure.

The routine may also be used to assist in the choice of colours in any other
program. Simply append the procedures from line 1000 onwards to your
program, and insert a call to PROCpalette at any suitable point. You can

55

BASIC V

then experiment with your choice of colours while the display is on the
screen. The routine allows the display panel to be moved around, so that
you can use it while adjusting the colours in any part of your own screen
display.

There are a few points to note. When PROCpalette is called, you need to
specify an initial logical colour for the panel display. The routine itself sets
its own palette for the logical colours 13, 14 and 15. If you have used these
in your own program you may find the resulting colours are changed.
There is no way of avoiding this if the panel display is to show the correct
proportions of red, green and blue in their true colours.

Pointer, Border and Flashing Colours
There are four further variations on the vou19 command for mixing
colours. The command:

VDU19,l,24,r,g,b

determines the colour for a screen border. By default the border is always
black, and therefore seldom obvious. Try using this version of the VDU19
command to see the effects which can be produced. The logical colour
number is of no importance here - any value will do. For example:

VDU19,1,24,255,64,0

will produce an orange-red coloured border.

The second variation of VDU19 can be used for changing the colours of the
mouse pointer. It takes the form:

VDU19,l,25,r,g,b

The default mouse pointer uses two colours, 1 and 2. If you try:
*POINTER
VDU19,1,25,112,96,112
VDU19,2,25,240,80,160

you should see a pink pointer with a grey border. You can also define your
own shape of pointer, and up to three logical colours (1, 2 and 3) may be
used for this purpose. The pointer colours can also be changed using the
instruction:

MOUSE COLOUR l,r,g,b

56

Using Colour

See Chapter Ten on the use of the mouse for more information on this
subject.

Finally, VDU19 can also be used to set the red, green and blue proportions
for flashing colours, thereby extending these to the 4096 colour palette.
The two commands are:

VDU19,l,17,r,g,b
VDU19,l,18,r,g,b

where the parameter '17' sets the first flash colour and '18' the second.
The values 'r', 'g' and 'b' are the proportions of red, green and blue as
before. The value of 'l' determines. which logical colour is to be set to a
flashing colour pair.

Using the 256-colour modes
It is now time to look at the 256-colour modes, that is modes 10, 13 and 15.
The problem that arises from Acorn's decision to maintain compatibility in
BASIC v with the colour control of previous versions of BBC BASIC is as
follows. The colour of each pixel on the screen is stored as a byte of
information in memory. Now, that would seem to be fine as one byte has a
range from 0 to 255. However, a standard has already been established
whereby the top bit of this byte is used to indicate whether the colour is a
foreground or background colour. Setting the top bit by adding 128 to the
colour number indicates a background colour. Maintaining that standard
means that the remaining bits can offer a range of 0 to 128 at best. In
practice not even this range is used and, as we shall see, the so-called 256-
colour modes offer a choice of just 64 colours.

Using 64 Colours
In some ways, working with 64 colours is very similar to working with 16,
4 or 2 colours. The familiar instructions COLOUR and GCOL are used to
determine the current graphics or text colour, and 128 is added to this if
we wish to specify a background colour. For example:

COLOUR 19

would produce pinkish-orange text, while:
GCOL 128+40

57

BASIC V

would select a rather nice grey-blue for the graphics background. To
increase the range of colours from 64 up to 256, a new keyword called TINT
has been added to BASIC. In practice TINT is used to add one of four levels
of white to the base colour selected by COLOUR or GCOL, thus giving a range
of 256 colours.

In fact, TINT can take any value in the range 0 to 256, but only four distinct
ranges are recognised:

TINT Level 0 1 2 3

TINT Range 0-63 64-127 128-191 192-255

When using TINT, keep to one set of four values, say 0, 64, 128 and 192. If
no TINT is specified then the default level of TINT, which is zero, will
always be applied. The result of this is that black, colour 0, really is black,
but white, colour 63, is rather dull. To get the brightest possible white you
will need to specify a TINT of 192:

COLOUR 63 TINT 192

You should be aware, though, that if you use the highest level of TINT for
this reason, then the same level of TINT applied to black will result in dark
grey and not true black. You should also note that the last value of TINT
specified will be applied to all subsequent COLOUR and GCOL statements in
the absence of any alternative specification. In general, if you wish to use
TINT, use it with every COLOUR and GCOL statement to ensure you get the
required result.

Alternatively, if the same level of TINT is to be used for several colour
selections, then the keyword TINT may be used on its own to achieve this.
For example:

TINT O, 192

would set the highest or lightest amount of TINT for the text foreground
colour. Used in this way, the first parameter of TINT specifies which colour
the TINT level is to be applied to - 0 = text foreground, 1 = text
background, 2 = graphics foreground, 3 = graphics background. The
second parameter is the level of TINT, as before.

TINT can also be used as a function to supplement POINT in order to
determine the colour and TINT of any pixel on the screen. POINT(x,y)
returns the logical colour number of the specified point, as before, while

58

Using Colour

TINT(x,y) performs a similar function but returning the level of TINT at the
specified point (values 0, 64, 128, or 192).

Although the default level of TINT is zero, it appears that executing either
•POINTER or MOUSE ON (to display the mouse pointer) has the unexpected
side effect of setting the TINT level to its maximum. This is an argument
for getting familiar with TINT and including it in every COLOUR and GCOL
statement you use.

You can use the following short program to see all 256 default colours
displayed on the screen. The program works in text mode, displaying the
word "COLOUR" in each shade in tum, but the same shades would apply
for graphics. The BASIC colour numbers from 0 to 63 run in two columns
down the screen with the colour number to the left. Each column repeats
the word COLOUR four times, adding progressively more TINT from left to
right. A REPEAL.UNTIL loop is used at the end of the program to maintain
the finished display. Press Escape to exit.

Listing 8.1 A display of 256 colours.

10 REM >Chap8-l
100 MODE 15
110 FOR col=O TO 63
120 FOR tint=O TO 192 STEP 64
130 COLOUR col TINT tint
140 x=-(col>31)*40:y=col+32*(col>31)
150 PRINTTAB(x,y);
160 IF tint=O THEN PRINT SPC(-(col<l0));STR$(col);
170 PRINTTAB(x+4+tint/8,y)"COLOUR";
180 NEXT tint
190 IF col<>31 AND col<>63 THEN PRINT
200 NEXT col
210 REPEAT UNTIL FALSE
220 END

The program itself is fairly straightforward, but notice how the truth
value of several comparisons (-1 or O) is used to get the formatting
correct. This is shown in line 140 in particular. This can be difficult to
follow but is usually quite concise.

59

BASIC V

Understanding 256-Colour Modes
This chapter explains how to select any of the default 256 colours. These
are, in effect, the equivalent of the logical colours we discussed with
respect to other modes. However, redefining the colours to access all the
4096 shades of colour is another story altogether. To start with, it is useful
to examine how the default colours are constituted.

As before, the default colours are made up from red, green and blue
components, but this time a maximum of four parts of each only is
allowed. This means the proportion of each colour is a number in the
range 0 to 3. The actual colour number can then be computed according to
the following formula:

colour_number = 16*blue + 4*green + red

If we treat the colour number as a byte, then the bottom two bits indicate
the level of red, the next two the level of green, and the next two again
the level of blue. The top-most bit, of course, determines whether the
colour specified is to be used for the foreground or background. If we
include the level of TINT, which we have already noted offers 4 levels also,
then a COLOUR (or GCOL) statement can be expressed as:

COLOUR 16*blue+4*green+red TINT _64*tint

where each of blue, green, red and TINT is in the range 0 to 3.

Redefining the Palette
Broadly, the way in which physical colours are linked to logical colour
numbers, is through the use of a set of 16 palette registers. The register
defines the actual colour to be used, while the logical colour number acts
as an index to a palette register.

In those modes using 16 or fewer colours this all works beautifully as there
is no problem in assigning one palette register to each logical number. By
default the palette registers are set up with the colours as listed in Table
8.2. To display the correct colour at any point on the screen, which is
constantly refreshed by information from the computer, the
corresponding memory byte acts as an index to a palette register. The
contents of the palette register control the output to the red, green and

60

Using Colour

blue guns of the monitor. With 16 different levels to each of three colours -
that makes four bits times three, making 12 bits in all.

The problem that arises in modes 10, 13 and 15 is, of course, that we have
only 16 registers to cope with the demands of 64 logical colours plus the
four levels of TINT. The mechanism which is used is not simple, and
attempting to change the palette in these modes can easily produce
unexpected, and maybe undesirable, results.

In essence it works like this. The four levels of red, green and blue each
supply two bits, which together with the four levels of TINT, again two
bits, makes up a colour value of ·eight bits, which is stored in screen
memory. From this, in conjunction with the palette registers, we need to
form 12 bits to send to the monitor. The top four bits of the memory byte (I
bit red, 2 bits green, 1 bit blue) are sent directly to the screen D to A
converters. The bottom four bits (range 0 to 15) form an index into a
palette register which then supplies the remaining eight bits of colour
information (3 bits red, 2 bits green, 3 bits blue).

The default palette settings in these modes have been carefully designed
so that TINT has the effect described, of adding one of four levels of white
to any of 64 BASIC colours. If any of the palette settings are changed, this
relationship is completely destroyed. Furthermore, changing a palette
register definition affects not just one but sixteen of the BASIC colours.
Redefining a palette register to change one colour to the desired subtle
shade is likely to ensure that the other 15 colours affected change to
shades that are less than useful. All of this is a recipe for potential
disaster, and most programmers would do well to leave everything as it
is. The default 256 colours have been carefully selected by Acorn to give a
good range of colours.

The third program in this chapter demonstrates how to redefine the
palette registers in order to display successively all of the Archimedes
possible 4096 colours in a 256-colour mode (mode 15). The program
displays the colours 16 at a time, each colour corresponding to the re
definition of a different palette register.

The 4096 colours can, in essence, be generated by cycling through 16 levels
of red, green and blue, and three nested FOR. .. NEXT loops in the program
do just that. Lines 220 to 240 determine the top four bits of the colour
number (bit 3 blue, bits 2 and 3 green, and bit 3 red). These can then be

61

BASIC V

combined to form (at line 250) a first approximation to the colour number
for the following GCOL statement. This is further refined so that each level
of blue cycled through specifies a different palette register. The contents of
the corresponding palette register are set to the correct levels of red,
green and blue by our old friend the VDU19 command at line 260. The last
point to note is that the full specification of which palette register to use is
determined partly by the GCOL number (bits 4 and 0) and partly by the
shifted TINT value. Any previous concept of the latter's use as a TINT has
quite disappeared.

Listing 8.2 Palette redefinition in 256 colour modes

10 REM >Chap8-2
100 MODE 15:0FF:ON ERROR MODE12:END
110 x=480:y=846:w=128:h=128
120 xl=O:y1=6:w1=7:h1=2
130 COLOUR 30
140 PRINTTAB(28,2)"4096 COLOURS in MODE 15"
150 PRINTTAB(26,3)"(using 16 palette registers)"
160 PRINTTAB(14,30)"Press SPACE BAR for the next 16-colour set;"
170 PRINTTAB(22,31)"hold down SHIFT to jump 16 sets."
180 PRINTTAB(x1+9,yl)"Colour Set"
185 PRINTTAB(x1+9,y1+12}"GCOL/TINT"
190 FOR red%=0 TO 15
200 FOR green%=0 TO 15
210 FOR blue%=0 TO 15
220 blue3%=(blue% AND %1000)>>2
230 green23%=(green% AND %1100)>>2
240 red3%=(red% AND %1000)>>2
250 co1%=(blue3%<<4)+(green23%<<2}+(red3%)
260 VDU19,blue%,16,red%<<4,green%<<4,blue%<<4
270 col%=col%-l*(blue%DIV4=1 OR blue%DIV4=3}-16*(blue%DIV4=2 OR

blue %D IV4=3)
280 tint%=(blue%MOD4)<<6
290 GCOL col% TINT tint%
300 RECTANGLEFILL (x+l.5*w*(blue%MOD4)), (y-1.5*h*(blue%DIV4)

h),w,h
310 PRINTTAB(x/16+1.5*w/16*(blue%MOD4)+2,32-

y/32+(1.5*h*(blue%DIV4)+h+32}/32)"p";STR$(blue%}
320 PRINTTAB(xl+wl*(blue%MOD4},yl+hl*(blue%DIV4)+2)

STR$(256*red%+16*green%+blue%);SPC3;
325 PRINTTAB(xl+wl*(blue%MOD4},y1+12+hl*(blue%DIV4}+2}

STR$(co1%);"/";STR$(tint%};SPC3

62

330 NEXT blue%:G=GET:IF INKEY-1 THEN red%-=red%<15
340 NEXT green%:NEXT red%
350 REPEAT UNTIL FALSE
360 END

Using Colour

You can cycle through all 4096 colours by pressing the space bar to control
the display. The GCOL and TINT values for each colour are also shown on
the screen. On a technical point, note the frequent use of the '>>>' and
'<<'operators for multiplying and dividing by two, much the quickest way
of achieving this. Thus the value after tint% at line 280 is given as
(blue%MOD4)<<6 where the '<<6' is the same as multiplying by 2 a total of
six times (ie, a value of 64).

As a final point, VDU19 can still be used as described for the other modes to
change the pointer and screen border colours. They are selected by
specifying the proportions of red, green and blue in the usual way.

Final Comments
While the large range of colours is certainly one of the major features of
the Archimedes, the control and selection of colours is also more complex
than hitherto. However, the potential is enormous and there must be a
multitude of exciting visual effects just waiting to be discovered. All that is
needed is a little imagination along with a good deal of time and effort.

Listing 8.3 Mode 12 palette display.

10 REM >Chap8-3
100 MODE12
110 PROCpalette(7)
120 END
130

1000 DEF PROCpalette(pixel)
1010 LOCAL x,y,z,bx,by,w,h,exit%,r,g,b
1020 w=256:h=224:exit%=FALSE
1030 r=15:g=15:b=l5
1040 bx=512:by=384
1050 *POINTER
1060 MOUSE TO bx,by
1070 PROCselect colour(0,0,bx,by,FALSE)
1080 PROCshow palette(bx,by)
1090 REPEAT -
1100 MOUSE x,y,z
1110 CASE z OF
1120 WHEN l:exit %=TRUE
1130 WHEN 2:PROCmove_palette(x,y,bx,by)
1140 WHEN 4:PROCpick(x,y,bx,by)
1150 ENDCASE
1160 TIME=O:REPEAT UNTIL TIME>8
1170 UNTIL exit%
1180 *SCHOOSE palette
1190 PLOT &ED,bx-4,by-8

63

BASIC V

1200 MOUSE OFF
1210 ENDPROC
1220
1230 DEF PROCshow_palette(x,y)
1240 MOVE x-4,y-8:MOVEx+w+4,y+h+8
1250 *SGET palette
1260 PROCset colours
1270 PROCdraw frame(x,y)
1280 PROCshow-colours(x,y)
1290 PROCwrite text(x,y)
1300 PROCwrite-numbers(x,y)
1310 ENDPROC -
1320
1330 DEF PROCdraw frame(x,y)
1340 GCOL 12:RECTANGLE FILLx,y,w,h
1350 GCOL 7
1360 RECTANGLE x,y,w,h
1370 RECTANGLE x-4,y-8,w+8,h+l6
1380 GCOL 0
1390 RECTANGLE x-2,y-4,w+4,h+8
1400 ENDPROC
1410
1420 DEF PROCshow colours(x,y)
1430 LOCAL colour-
1440 FOR colour=l TO 3
1450 GCOL colour+l2
1460 RECTANGLE FILL x+l6+80* (colour.-1) ,y+h-104, 64, 64
1470 NEXT colour
1480 GCOL pixel
1490 RECTANGLE FILL x+l6,y+l6,w-32,64
1500 ENDPROC
1510
1520 DEF PROCwrite_text(x,y)
1530 GCOL 7:VDU5
1540 MOVE x+24,y+h-8:PRINT"Red"
1550 MOVE x+88,y+h-8:PRINT"Green"
1560 MOVE x+l76,y+h-8:PRINT"Blue"
1570 VDU4
1580 ENDPROC
1590
1600 DEF PROCwrite numbers(x,y)
1610 GCOL 12:RECTANGLE FILL x+l6,y+80,224,32
1620 GCOL 7:VDU5
1630 MOVE x+30,y+ll2:PRINT FNjust(r,2)
1640 MOVE x+ll0,y+ll2:PRINT FNjust(g,2)
1650 MOVE x+l90,y+ll2:PRINT FNjust(b,2)
1660 VDU4
1670 ENDPROC
1680
1690 DEF FNjust(v,f)
1700 LOCAL v$:v$=STR$(v)
1710 =STRING$(f-LEN(v$)," ")+v$

64

Using Colour

1720
1730 DEF PROCmove_palette(x,y,RETURN bx,RETURN by)
1740 LOCAL z,exit %:exit%=FALSE
1750 *SCHOOSE palette
1760 PLOT &ED,bx-4,by-8
i770 MOUSE TO x,y
1780 MOUSE RECTANGLE 4,8,1279-w-8,1023-h-16
1790 GCOL 3,6
1800 REPEAT:MOUSE x,y,z:UNTIL z=O
1810 REPEAT
1820 MOUSE x,y,z
1830 RECTANGLE x,y,w,h
1840 IF z=2 THEN
1850 RECTANGLE x,y,w,h
1860 PROCshow palette(x,y)
1870 exit %=TRUE:bx=x:by=y
1880 REPEAT:MOUSE x,y,z : UNTIL z=O
1890 ELSE
1900 WAIT
1910 RECTANGLE x,y,w,h
1920 ENDIF
1930 UNTIL exit %
1940 MOUSE RECTANGLE 0,0,1279,1023
1950 ENDPROC
1960
1970 DEF FNarea(x,y,xl,yl,w,h)=(x>=xl AND x<=xl+w AND y>=yl AND

y<=yl+h)
1980
1990 DEF PROCpick(x,y,bx,by)
2000 CASE TRUE OF
2010 WHEN NOT FNarea(x,y,bx,by,w,h):

PROCselect colour(x,y,bx,by,TRUE)
2 020 WHEN-FNarea(x,y,bx+l6,by+h-112,64,64) :PROCchange colour(r)
2 030 WHEN FNarea (x, y, bx+96, by+h_-112, 64, 64) :PROCchange - colour (g)
20 40 WHEN FNarea(x,y,bx+l76,by+h-112,64,64) :PROCchange colour(b)
2 050 ENDCASE -
2060 PROCupdate palette
2 070 ENDPROC -
2 080
2 090 DEF PROCselect_colour(x,y,bx,by,flag%)
2100 LOCAL pl,p2
2110 IF flag % THEN pixel=POINT(x,y)
2120 SYS "OS ReadPalette",pixel,16 TO ,,pl,p2
2130 r=pl>>>l2 AND &FF
2140 g=pl>>>20 AND &FF
2150 b=pl>>>28
2160 IF flag % PROCshow colours(bx,by)
2170 ENDPROC -
2180
2190 DEF PROCchange colour(RETURN c)
2200 c=(c+l)MOD16 -
2210 ENDPROC

BV-E 65

BASIC V

2220
2230 DEF PROCset colours
2240 COLOUR 13,lG*r,O,O
2250 COLOUR 14,0,16*g,O
2260 COLOUR 15,0,0,16*b
2270 COLOUR pixel,16*r,16*g,16*b
2280 COLOUR 12,0,0,0
2290 ENDPROC
2300
2310 DEF PROCupdate palette
2320 PROCset colours
2330 PROCwrite numbers(bx,by)
2340 ENDPROC -

66

9: Graphics

The original BBC Micro was relatively well endowed with graphics
capabilities when it was launched in 1981, and for BASIC programmers this
was reflected in specific keywords, particularly PLOT, and the variety of
so-called VDU commands. The later 1.2 Operating System increased the
scope of the PLOT function, and the graphics capabilities of the BBC Micro
were further extended with Acorn's Graphics Extension ROM, the features
of which were subsequently built into the Operating System used on the
Master 128 and Master Compact.

Unfortunately, no additional support has been provided explicitly within
BASIC for any of these new features until the advent of BASIC v on the
Archimedes. Instead, everything new had had to be handled through the
use of PLOT and VDU instructions.

Of course, many graphics functions are significantly faster on an
Archimedes, but the system as a whole incorporates only a few additional
functions, plotting sprites for example. However, many more graphics
functions now have an associated BASIC keyword, which both tends to
draw attention to features which might otherwise be overlooked, as well
as making such features easier to use for many Archimedes owners.

There is one major change as far as graphics is concerned, and that is in
the availability of the range of colours and modes supporting up to 256
different colours on the screen together. This important, but sometimes
complex, subject was dealt with in the preceding chapter. ·

New Graphics Commands
The new BASIC instructions can be listed as follows:

CIRCLE CIRCLE FILL

ELLIPSE ELLIPSE FILL

RECTANGLE RECTANGLE FILL

LINE

FILL FILL BY

67

BASIC V

ORIGIN

POINT

MOVE BY

POINT BY

DRAW BY

POINT TO

The ORIGIN instruction duplicates the VDU29 command by allowing the
origin for graphics to be moved to a new position. As with all BASIC
instructions which package up VDU commands, the two arguments, the x
and y co-ordinates, are separated by a simple comma instead of the semi
colons needed to terminate values in excess of 255 in VDU commands. So:

ORIGIN 640, 512

would move the origin to the centre of the screen. When specifying a new
origin, the co-ordinates of the position are always given relative to an
origin at the bottom left-hand comer of the screen.

Similarly, the POINT instruction duplicates, for convenience, one of the
PLOT commands, PLOT69, to allow a point to be plotted at a specified
position. Therefore:

POINT 640,512

will plot a point at the centre of the screen, assuming the origin in its
default position, and:

POINT BY 640,512

will also plot a point but by moving 640 units horizontally and 512 points
vertically relative to the previous screen position. This variation
duplicates the PLOT61 command. The· POINT command adds no new
function to BASIC v, but is an example where the use of an alternative and
more meaningful BASIC keyword will help beginners to master graphics.

The POINT TO instruction may be used to move the screen pointer when this
is not under mouse control. See Chapter Ten for information on using the
MOUSE ON instruction. The pointer will be moved to the screen position
specified, for example:

POINT TO 160, 128

The LINE instruction is a different kind of convenience in that it does not
duplicate any individual PLOT or VDU command but provides a single
instruction for what previously required two. Thus:

68

MOVE xl,yl
DRAW x2,y2

Graphics

can now be written as:

LINE xl,yl,x2,y2

in order to draw a line from one point (xl,yl) to another (x2,y2).

The three new shape drawing instructions, however, are again BASIC
keywords duplicating existing PLOT instructions (on the Master 128 and
Compact), and simplifying the specification of size and position into the
bargain. All three instructions produce an outline shape, or a filled shape
if the keyword FILL is included. The CIRCLE instruction is of the form:

CIRCLE x,y,r

where x, y is the centre of the circle, and r is the radius. The Ellipse
drawing function has the format:

ELLIPSE x,y,ml,m2

where x,y is the centre as before, ml is the length of the semi-major axis,
and m2 is the length of the semi-minor axis. A fifth parameter may also be
included which, if present, specifies the angle in radians between the x
axis and the semi-major axis. For example:

ELLIPSE FILL 640,512,100,75,PI/2

would draw a filled ellipse at the centre of the screen (assuming a default
origin), with major axis 200 units and minor axis 150 units rotated
through 90 degrees into a vertical position. The statement is equivalent to:

ELLIPSE FILL 640,512,75,100

by reversing the lengths of the semi-major and semi-minor axes. Note
that there are some limits imposed on the parameters to the ELLIPSE
instruction if an error is not to be generated. This is covered quite clearly
in the User Guide Oook up ELLIPSE).

The RECTANGLE statement is the last of the new BASIC keywords for
drawing shapes and, as well as the FILL variation, may take either four or
six parameters. In its simplest form, the first two parameters specify the
co-ordinates of one corner, while the other two, which may be positive or
negative, specify offsets horizontally and vertically from the first corner
to the opposite corner. For example:

RECTANGLE FILL 480,384,320,256

would display a solid rectangle in the current graphics foreground colour
at the centre of the screen. Note that when an outline rectangle is drawn,

69

BASIC V

the graphics cursor remains at the first reference point, but that when a
filled rectangle is displayed the graphics cursor is left at the opposite
corner. This is exactly what would be expected if a rectangle were to be
explicitly drawn as a sequence of four straight lines or two filled triangles,
using MOVE and DRAW or PLOT, as with previous versions of BBC BASIC.

A second form of the RECTANGLE (or RECTANGLE FILL) statement requires
two further parameters and allows the rectangular area of the screen,
defined as before by the first four parameters, to be copied (no FILL) or
mov.ed (FILL) to a new position on the screen. Any graphics image
contained within the rectangle defined will be copied or moved as a result,
providing a 'copy and paste' or 'cut and paste' facility for graphics. When
an image is to be moved, its original area is filled with the current
graphics background colour.

The following program uses the same procedure, PROCrectangle, as
Chapter Ten to demonstrate the use of the 'copy and paste' facility
described above. The program fills the screen with randomly sized and
coloured ellipses. The mouse may then be used to select any rectangular
area of the screen and copy its contents elsewhere. Used in a continuous
manner, it produces a 'painting' effect with attractive results.

Listing 9.1 Graphics demonstration.

10 REM >Chap9-1
100 MODE12:0FF:ON ERROR MODE12:PRINT REPORT$;" at line ";ERL:END
110 PROCellipses
120 x1=320:y1=256:w=160:h=l28
130 PR0Crectangle(4,xl,yl,w,h)
140 MOUSE RECTANGLE 0,0,1279-w,1023-h
150 MOUSE TO 160,128
160 REPEAT
170 MOUSE x,y,z
180 PROCcopy(xl,yl,w,h,x,y)
190 UNTIL FALSE
200 END
210

1000 DEF PROCrectangle(colour,RETURN xl,RETURN yl,RETURN w,RETURN
h)

1010 LOCAL exit%,switch%,x,y:GCOL 3,colour
1020 *POINTER
1030 exit%=FALSE:switch%=TRUE
1040 MOUSE TO xl,yl
1060 REPEAT
1070 RECTANGLE xl,yl,w,h
1080 MOUSE x,y,z

70

Graphics

1090 IF z THEN
1100 CASE z OF
1110 WHEN 4: switch%=NOT switch%·
1120 IF switch% THEN MOUSE TO xl,yl ELSE MOUSE TO x+w,y+h
1130 WHEN l:exit%=TRUE
1140 ENDCASE
1150 REPEAT:MOUSE x,y,z:UNTIL z=O
1160 ENDIF
1170 WAIT
1180 RECTANGLE xl,yl,w,h
1190 IF switch% THEN xl=x:yl=y ELSE w=x-xl:h=y-yl
1200 UNTIL exit%
1210 *POINTER 0
1220 ENDPROC
1230
1240 DEF PROCellipses
1250 LOCAL n
1260 FOR n=l TO 100
1270 GCOL RND(B)-1
1280 ELLIPSE FILL

RND(1100)+100,RND(900)+100,RND(100)+100,RND(100)+100
1290 NEXT n
1300 ENDPROC
1310
1320 DEF PROCcopy(RETURN xl,RET.URN yl,RETURN w,RETURN h,x2,y2)
1330 RECTANGLE xl,yl,w,h TO x2,y2
1340 xl=x2:yl=y2
1350 ENDPROC

Use the mouse to move the rectangle around the screen. Pressing the
select button fixes the position but allows the size and proportions to be
changed. You can swap between these two adjustments until you are
happy with the area selected. Pressing the adjust button then turns that
area into a paint brush for painting on the screen. Just move the mouse
around to produce spectacular effects.

The program uses two further procedures, PROCellipses and PROCcopy.
The former simply calls the ELLIPSE FILL instruction 100 times, specifying
randomly selected values for the position and shape in each case.
PROCrectangle is then called to allow the user to define a rectangular area
of this display. Finally PROCcopy is called repeatedly to copy the image
area defined to a new position determined by the movement of the mouse.

Line 140 ensures that the image. area always remains on-screen by
restricting the movement of the mouse, while line 150 displays the image
area in a convenient but arbitrary starting position. In the definition of
PROCcopy, note the use of RETURN with the first four parameters, so that

71

BASIC V

PROCcopy, note the use of RETURN with the first four parameters, so that
each new position is remembered and used as the starting point of the
next move or copy which is carried out by the RECTANGLE statement at line
1330. If you try this program out, as well as demonstrating the use of a
good many of the new features of BASIC v, you will also end up with some
highly colourful and attractive displays.

Fill Routines
The new FILL instruction allows any area of the screen to be flood-filled
using the current foreground colour. The instruction requires just two
parameters which specify the x,y co-ordinates of the starting point for the
fill. The only other requirement is that the starting point must match the
currently selected background colour, otherwise nothing happens. This
problem can be easily avoided by using the following sequence. Assume
the current foreground and background colours are always held in the
variables fc and be respectively. A suitable routine could be written as:

MOVE x,y
bc=POINT(x,y)
GCOL be + 128
FILL x,y

The background is set to the colour at the point from which the fill will
take place before the FILL instruction is executed. The instruction then fills
in all directions until a non-background colour, the edge of the screen or
the edge of the graphics window, is reached. The variation FILL BY
performs exactly the same function as the FILL instruction above, except
that the co-ordinates for the starting point are taken to be relative to the
last position of the graphics cursor rather than being absolute co
ordinates. Whichever format is used, a flood-fill on the Archimedes is very
fast indeed.

Relative Co-ordinates
We have already seen how the incorporation of 'BY' in two keywords
(POINT BY and FILL BY) allows a point to be specified relative to the last
position of the graphics cursor, rather than in absolute terms. This use of
BY can also be applied to the two instructions MOVE and DRA w in exactly
the same way.

72

Graphics

Plotting Sprites
The Archimedes provides support for sprites with a number of star
commands and additions to the range of PLOT functions in BASIC, in
addition to the sprite editor supplied on the Welcome disc. The star
commands are, of course, not pai:t of BASIC but access the SpriteUtils
system module. These commands are listed here for reference:

"SCHOOSE selects a sprite by name for plotting
"SCOPY makes a copy of a sprite
"SCREENLOAD plots a sprite directly from a file to screen
•sCREENSA VE saves the current graphics window as a sprite
"SDELETE deletes one or more sprites from memory
"SFLIPX reflects a sprite about the x axis
"SFLIPY reflects a sprite about they axis
"SGET saves a rectangular area of the screen as a sprite
•sINFO displays information on the sprite workspace
•susT lists the sprites currently in memory
"SLOAD loads a file of sprite definitions into memory
"SMERGE merges two sets of sprite definitions
•sNEW clears the sprite workspace
•sRENAME renames a sprite
•ssA VE save all sprites currently in memory

The currently selected sprite may be plotted at any point on the screen by
using a PLOT instruction (PLOT232 - PLOT239). The different values have the
usual range of meanings for PLOT commands. For example:

PLOT &ED,640,512

would plot the currently selected sprite at the centre of the screen,
assuming the default position for the origin. This is the most likely plotting
mode to be used, often in conjunction with Exclusive OR plotting to achieve
apparent movement on the screen. Of particular interest, •sGET allows
any rectangular area of the screen to be saved as a sprite. "SCHOOSE selects
any sprite in memory ready for plotting on the screen using PLOT&:ED.
These commands were used to good effect in the final program of
Chapter Eight (listing 8.3).

Sprites are covered in detail in the User Guide for BASIC programmers,
and in the Programmer's Reference Manual for those who require more
detailed information.

73

10 : Archimedes Mouse

The Archimedes is supplied with a three-button mouse as standard, and
this device is fully supported by extensions to BBC BASIC. Acorn has
recommended that software writers follow the convention that the left
hand button is designated select, the middle button menu, and the right
hand button adjust. However, this convention is not imposed upon the
programmer, who can alternatively choose to associate each button with
any function appropriate to his program. BASIC v provides instructions to
enable and disable the mouse and, when enabled, to return to a program
the state of the three buttons and the graphics co-ordinates of its current
position.

A pointer can also be displayed such that moving the mouse automatically
moves the pointer within any rectangular screen area defined by the
user's program. The default is the whole screen area. The default pointer
shape is an upward-sloping blue arrow, but it is possible for a user
defined pointer shape to be used instead, and up to four different pointer
designs may be valid concurrently, with the ability for a program to select
which pointer to display. However, the design of a pointer shape involves
setting up a data block in memory and using a system call to the Wimp
manager, a task which is outside the immediate scope of this book. Note
that because the mouse pointer is controlled by the Wimp manager,
removing or deleting this module will make it impossible for any pointer
to be displayed.

Whether the default or a user defined pointer shape is used, the size and
proportions of the pointer displayed will, like text, depend upon the screen
mode in use. If you want a pointer to appear exactly the same in a 40-
column mode and an 80-column mode, then one solution would be to
define two pointer shapes to proportions which will exactly compensate
for any distortions introduced by the characteristics of the different
modes.

Whatever pointer shape is used, BASIC provides the means of varying its
colours regardless of how these were originally defined.

74

Archimedes Mouse

The first command to consider is not in fact a BASIC instruction at all, but a
call to the Wimp manager, in the form:

*POINTER <n>

This enables the pointer to be used with the mouse. The single value
parameter is optional. H no parameter is specified then the default system
defined pointer is displayed. A parameter of '1' also selects the default
pointer, while other values select user-defined pointers. A parameter of
'O' disables the pointer. Once •POINTER has been executed, a pointer can be
switched on and off with one of BASIC's MOUSE instructions. Thus, using:

MOUSE ON

will display the default pointer, while an instruction of the form:

MOUSE ON n

will display pointer 'n' with the same values and meanings as above for
•POINTER. However, unlike •POINTER, 'n' may be either a value or an
expression in this case, giving more flexibility in the use of this instruction.
To switch a pointer off simply use:

MOUSE OFF

Note that changing mode will also cause the pointer to disappear from
the screen, but MOUSE ON, with or without a parameter as required, is
sufficient to restore it.

There is a further variation of the MOUSE ON command which is
undocumented in the User Guide. If 128 is added to the pointer number
(n), the pointer is enabled (ie, it appears on the screen) as described above,
but is 'disconnected' from the mouse. Once this has been done, the pointer
may be moved to any location using the POINT TO command to specify a
point in graphics units on the screen. The only oblique reference in the
User Guide is in connection with •FX106 which is entirely equivalent to
MOUSE ON. Using MOUSE ON with a pointer number less than 129 will
restore mouse control, while MOUSE OFF will remove the pointer
altogether.

Input from the Mouse
A single instruction is provided by BASIC to return the position of the
mouse and the state of the mouse buttons. You need to include three
variables such as x, y, and z as shown here. The instruction takes the form:

75

BASIC V

MOUSE x,y,z

where x and y are the graphics co-ordinates of the active point of the
pointer, and z indicates which buttons, if any, are depressed at that time.
It is simplest to think of the three buttons as three binary switches with
values of 0 (off) and 1 (on or depressed). Combining the resulting three
bits gives a number in the range 0 to 7, where a value of 0 indicates all
three buttons are 'off', and a value of 7 that all three buttons are 'on'.
Operated individually, the adjust button (the right one) returns '1' (binary
001), the menu button (in the middle) returns '2' (binary 010), while the
select button (to the left) returns '4' (binary 100).

In use, this instruction will normally be placed at the start of a loop which
is executed repeatedly. In most cases, either the button or combination of
buttons pressed, or the position of the pointer on the screen, will
determine any action to be taken. Typically a CASE statement is the best
choice for handling this situation. Consider, for example:

exit%=FALSE
REPEAT
MOUSE xpos,ypos,state
CASE state OF
WHEN 7:exit%=TRUE
WHEN 4:PROCselect(xpos,ypos)
WHEN 2:PROCmenu(xpos,ypos)
WHEN l:PROCadjust(xpos,ypos)
END CASE
UNTIL exit%

This responds to any of the three buttons being pressed individually by
calling a corresponding procedure, while pressing all three buttons
together causes an exit from the loop. An alternative approach, making
use of the pointer position, might be written as:

exit%=FALSE
REPEAT
MOUSE x,y,buttons
CASE TRUE OF
WHEN FNpos(x,y,al,bl,width,height) :PROCmenu(l,buttons)
WHEN FNpos(x,y,a2,b2,width,height) :PROCmenu(2,buttons)
WHEN FNpos(x,y,a3,b3,width,height) :PROCmenu(3,buttons)

WHEN FNpos(x,y,a9,b9,width,height) :exit%=TRUE
END CASE
UNTIL exit%

This routine assumes the existence of a function (FNpos) which checks
whether the current pointer position lies within a specified screen

76

Archimedes Mouse

rectangle defined by the co-ordinates of its bottom left-hand comer, width
and height, and returns a value of TRUE or FAISE depending on the result.
This would suit a situation where a number of menu options were
displayed in boxes on the screen. The routine above calls a menu
procedure in each case, passing the number of the menu option specified,
and the button status.

Both approaches can be combined together. Typically, the select button
would be used to pick out a menu choice displayed on the screen, with the
other buttons having no effect. An additional CASE OF statement will do the
job as follows:

exit%=FALSE
REPEAT
MOUSE x,y,buttons
CASE buttons OF
WHEN 4:
CASE TRUE OF
WHEN FNpos(x,y,al,bl,width,height) :PROCmenu(l)
WHEN FNpos(x,y,a2,b2,width,height) :PROCmenu(2)
WHEN FNpos(x,y,a3,b3,width,height) :PROCmenu(3)

WHEN FNpos(x,y,a9,b9,width,height) :exit%=TRUE
END CASE
ENDCASE
UNTIL exit%

An IF ... THEN .. . ENDIF structure could be used as an alternative to the outer
most CASE statement - your choice will depend on just what the code is
trying to achieve.

One of the problems that can only too easily arise when using the mouse,
is that the button is depressed for too long, resulting in several sets of
values (for x, y and z) ending up in the mouse buffer. The sheer speed of
the Archimedes itself exacerbates this problem. The best way of avoiding
this is to use a REPEAT ... UNTIL loop to check that all the buttons have been
released before checking for the next mouse input, and then a second loop
to wait for a button press:

REPEAT
REPEAT:Mouse x,y,z:UNTIL z=O
REPEAT:MOUSE x,y,z:UNTIL z<>O

UNTIL exit%

77

BASIC V

Further Mouse Controls
When the Archimedes is first switched on, or after a mode change, the
selected pointer is displayed at the centre of the screen (ie, the MOUSE x,y,z
instruction would return x=640, y=512). Otherwise, if MOUSE ON and
MOUSE OFF are used to switch pointers on and off, the pointer always
appears in the last pointer position. A program can alternatively ensure
that the pointer is displayed in a particular position by using the
instruction: ·

MOUSE TO x,y

where x and y are in graphics co-ordinates. A program can also limit the
area of the screen over which the pointer may be moved with the
instruction:

MOUSE RECTANGLE x,y,w,h

where x and y are the co-ordinates of the bottom left-hand corner, and w
and h are the width and height respectively, of the area concerned. This
can be useful if the mouse is being used to move an object round the
screen, to ensure that the whole of the object remains on-screen at all
times. Note that limiting the position of the pointer in this way is quite
independent of any text or graphics windows which you may create at the
same time. Changing mode restores the pointer area to the full screen
display.

A further instruction may be used to control the speed of movement of the
pointer on the screen in relation to the movement of the mouse itself.
Another way of looking at this is in terms of the physical distance the
mouse has to move to cover the full screen width or height. The
instruction takes the format:

MOUSE STEP xstep,ystep

where 'xstep' and 'ystep' can be thought of as multipliers controlling
horizontal and vertical movement respectively. The second parameter is
optional, in which case both are set to the same value. The default values
are both 1. Changing both the x and y multipliers to 2 will double the
speed of movement and result in the mouse having to be moved only half
the previous distance to obtain full screen movement. If non-integers are
used the values will be truncated to integer values. Hence values less than
1 all truncate to zero, resulting in no mouse movement whatsoever. Using

78

Archimedes Mouse

negative values will cause the screen pointer to move in the opposite
direction to that of the mouse itself!

Colouring the Mouse Pointer
All pointers are defined within a rectangular area, and may use up to
three colours, logically colours 1, 2 and 3. Logical colour 0 represents the
transparent parts of the pointer design, where the screen display is not
obscured, and may not be changed, but any of the Archimedes 4096 colours
may be assigned to the pointer's three logical colours. There are two
equivalent ways of doing this using either:

MOUSE COLOUR l,r,g,b

or:

VDU19,25,l,r,g,b

The logical colour 1 may be set to 1, 2 or 3 (higher values simply repeat
values 0 to 3), while the values r, g, and b specify the amounts of red,
green and blue (each in the range 0 to 255) to be mixed to obtain the
required colour. The values specified follow the rules so that the values of
r, g and b only change meaningfully in steps of 16. Both forms of the
instruction may be better written as:

MOUSE COLOUR l,16*r,16*g,16*b

or:

VDU19,l,25,16*r,16*g,16*b

where r, g and b are integers in the range 0 to 15. When selecting or
changing the colours for a pointer, it is important to take into account the
other colours on the screen to avoid the pointer becoming invisible. The
default pointer shape with its coloured border ensures that the pointer
remains visible even when placed over areas of colour which are the same
as those used in the pointer itself. You can also change the default pointer
to have a more solid appearance by making both the inside and the border
the same shade, provided that that shade is not used elsewhere on the
active screen area. The whole subject of colour on the Archimedes is
explained in detail in Chapter Eight.

Switching pointers on and off with the MOUSE ON and MOUSE OFF
instructions retains the current colour assignments for any pointer, but
using •POINTER to delete and then display a pointer will result in the use of

79

BASIC V

the colours in the original definition (dark and light blue for the default
pointer). Mode changes also leave the pointer colours unchanged.

Example Mouse Program
We will now consider an extended example, in the form of a complete
program, which illustrates the use of the mouse and the new RECTANGLE
graphics statement. The whole routine has been written as a procedure, to
make it easy to incorporate into other programs, with a short
demonstration of what it does. Initially, the procedure displays a
rectangle on the screen. As the mouse is moved around, so the rectangle
moves. Pressing the select button fixes the bottom left-hand comer while
allowing the opposite corner to be moved to change the proportions and
size of the rectangle displayed. Pressing select fixes the size, and once
more allows the rectangle to be moved as a whole. Both position and size
can be repeatedly changed until the adjust button is pressed, whereupon
the procedure exits, returning the x,y c;o-ordinates, width and height of
the resulting rectangle. The short demo program accompanying the
procedure displays these values and the rectangle on the screen.

The complete program, including the procedure PROCrectangle, is listed
below. The procedure requires five parameters, the first being the logical
colour to be used for the rectangle, and the other four the x,y co-ordinates
of a corner and the width and height of the rectangle. When the procedure
is called, these last four parameters should be used to determine the initial
position and size of the rectangle to be displayed. On exit they return the
final values of the same parameters.

Within the procedure, the main loop runs from lines 1060 to 1200. This is a
REPEAL.UNTIL loop which constantly checks the mouse and maintains and
changes the rectangle displayed on the screen until the adjust button exits
from the loop and, ultimately, the procedure. Exclusive OR plotting is used
with the RECTANGLE statement to repeatedly draw and erase the
rectangle, while either the reference co-ordinates, or the width and
height, are updated accordingly.

Also within the loop, a check is made on the state of the mouse buttons. If
one (or more) has been pressed, then a CASE statement is used to
determine the correct action. If the select button has been pressed (button
value = 4) then the procedure has to switch between changing position

80

Archimedes Mouse

and changing size. The pointer also has to be moved from one comer of
the rectangle to the opposite one.

The rectangle is drawn near the start of the loop, and erased near the end,
so that it remains visible for the maximum length of time within each
cycle. Note the use of WAIT at line 1170 to synchronise deletion and
redrawing of the rectangle with the vertical sync, and also the
REPEAT ... UNTIL loop at line 1150 which ensures that the mouse buttons
return to a zero state after being pressed, and only after being pressed,
before the loop is repeated. Even with the speed of the Archimedes,
correct timing and synchronisation are just as important within such
routines. The same problems of flickering images can occur just as easily
as before, but more rapidly.

Examination of the coding in the rest of the procedure should clear up any
further queries, as all is quite straightforward. A procedure such as this
can be quite useful in an art or graphics package. For example, it allows
the user to define any part of an existing display and then copy this
elsewhere, or even produce stunning effects by 'drawing' with this image
(see listing 9.1). It also allows any part of a screen display to be defined for
saving as a sprite.

Listing 10.1 Dynamic mouse rectangle program

10 REM >Chapl0-1
100 MODE12 : 0FF
110 p=320:q=256:r=160:s=128
120 PR0Crectangle(4,p,q,r,s)
130 RECTANGLE p,q,r,s
140 PRINT"x ";p
150 PRINT"y ";q
160 PRINT"w ";r
170 PRINT"h ";s
180 ON
190 END
200

1000 DEF PROCrectangle(colour,RETURN xl,RETURN yl,RETURN w,RETURN
h)

1010 LOCAL exit %,switch%,x,y:GCOL 3,colour
1020 *POINTER
1030 exit%=FALSE:switch%=TRUE
1040 MOUSE TO xl,yl
1060 REPEAT
1070 RECTANGLE xl,yl,w,h
1080 MOUSE x,y,z
1090 IF z THEN

BV-F 81

BASIC V

1100 CASE z OF
1110 WHEN 4:switch%=NOT switch%
1120 IF switch% THEN MOUSE TO xl,yl ELSE MOUSE TO x+w,y+h
1130 WHEN l:exit%=TRUE
1140 ENDCASE
1150 REPEAT:MOUSE x,y,z:UNTIL z=O
1160 ENDIF
1170 WAIT
1180 RECTANGLE xl,yl,w,h
1190 IF switch% THEN xl=x:yl=y ELSE w=x-xl:h=y-yl
1200 UNTIL exit%
1210 *POINTER 0
1220 ENDPROC

82

ll:Sound

The Archimedes is provided with a sophisticated stereo sound system with
up to eight voices or channels. The sound system is controlled by a number
of modules which form part of the Arthur Operating System and RISC OS.
BASIC v provides a number of instructions for controlling sound, including
the SOUND command which provides some compatibility with previous
versions of BBC BASIC.

Full control of the sound system is really only possible by directly using the
SWI, or Operating System, calls provided for this purpose. A detailed
description of these swr calls is really beyond the scope of this book, but a
number of these are accessible via star commands, and these are detailed
below along with the instructions in BASIC for controlling sound.

BASIC Sound Instructions
Almost the simplest sound instructions must be SOUND ON and SOUND OFF,
which may be used at any time to turn the Archimedes' whole sound
system on or off. You can easily check this by pressing CTRL-G or typing
VDU7, both of which make the computer 'beep'. Once SOUND OFF has been
executed no beep will be heard until SOUND ON sWitches the sound system
back on again. '

The sound system uses up to eight voices, the number active at any time
being set with the VOICES command. The number of voices must be a
power of two - any other number is rounded up·. to the next value in
sequence (1, 2, 4, or 8). Acorn recommends that the number of active voices
should always be kept to a minimwn as sound places heavy demands upon
any computer, even the Archimedes.

A star command is needed to assign a waveform, or instrument, to a
channel. There is some confusion of terminology here for which we can
thank Acorn. BASIC refers to voices and waveforms, while Arthur and RISC

os refers to channels and voices. As a result, even Acorn's own manuals
need reading with some care. A waveform may be assigned to a channel in
one of two ways, by index or by name.

83

BASIC V

A list of the nine default voices (or waveforms) may be obtained using the
command •vrncES. This will list the voices by name and by index number as
follows:

Number
1
2
3
4
5

Voice Number
WaveSynth-Beep 6
String Lib-Soft 7
String Lib-Pluck 8
String Lib-Steel 9
StringLib-Hard

Voice
Percussion-Soft
Percussion-Medium
Percussion-Snare
Percussion-Noise

If you try executing this command, you should also see a figure '1' to the
left of the first voice, WaveSynth-Beep. This shows that that voice is
currently assigned to channel 1. This is the Archimedes 'beep' which is
always connected to channel 1.

Any of the default, or any other voices, can be assigned to a channel using
the command:

*CHANNELVOICE <channel> <voice index/name>

Thus the beep could be given the voice 'Percussion-Soft' by writing:

*CHANNELVOICE 1 6

or:

*CHANNELVOICE 1 Percussion-Soft _

Although longer, the second format is perhaps preferable, as using an
index is dependent upon the order in which a set of voices is loaded. There
is also an alternative BASIC keyword, VOICE, not documented in the
original User Guide, which performs the same function in this case, so the
last command above could also be written:

VOICE l,"Percussion-Soft"

The second parameter is the name of a voice and, as with other BASIC
instructions, should be either a string variable or expression, or enclosed
in quotes as here. Try experimenting, using either method, by using other
voices to become the 'beep' in tum.

Setting the Stereo Position
The stereo position of each channel may be specified with the STEREO
instruction. The position is given as a number in the range -127 to + 127,

84

Sound

where -127 indicates the extreme left, and + 127 the extreme right. For
example:

STEREO 1,0

would position channel 1 centrally, ie, mono reproduction. However, as
indicated in the User Guide, there are only seven discrete positions. As a
result you could use the following set of values to specify all the stereo
positions:

-80, -48, -16, 0, +16, +48, +80

moving from left to right. The effect of this instruction will only be
apparent on the sound output through the miniature stereo jack socket at
the rear of the Archimedes.

Setting and Reading the Beat
The BEATS statement allows channels to be synchronised together. The
beat counter counts from 0 to n-1 where n is the value specified in the
BEA TS statement. When the value of n is reached the beat counter resets
itself to 0. The syntax is simply:

BEATS n

The keyword BEA TS can also be used to return its current setting, for
example by typing:

PRINT BEATS

There is a second very similar keyword, BEAT. The value of this pseudo
variable returns the current value of the beat counter, and will therefore
be in the range 0 to n, where n is the value specified with the BEATS

instruction.

The value specified in the BEATS statement can be used in conjunction with
the SOUND instruction (see later) to fix the position of notes within a bar of
music. BEAT can be used to ensure that sounds are correctly synchronised.
An example will tie all this together shortly.

Setting and Reading the Tempo
The rate at which the beat counter is incremented is determined by the
tempo. This is set with the TEMPO statement, and as with BEATS, TEMPO can

85

BASIC V

set the corresponding rate, or return the value to which the tempo is
currently set. Therefore:

TEMPO n

will set the tempo to n, while:

PRINT TEMPO

will print out the current setting of the tempo. The value of n should be
thought of as a four digit hexadecimal number, starting with '&', where
the three right-most digits are a fraction less than one. A rate of &1000,
the default, represents a tempo of one beat per centi-second, whilst &2000
represents double that rate, and so on.

Sound Statement
To create a sound or note, you need to use the SOUND instruction. The
format of this is:

SOUND <channel>, <amplitude>, <pitch>, <duration> [,after]

For compatibility, this follows the same format as on the BBC Micro and
Master series except for the optional 'after' parameter. The 'channel'
parameter specifies which sound channel to use, with a maximum value
of 8, but within the range determined by the VOICES instruction.

The 'amplitude' parameter provides volume control with -15 being the
loudest and 0 the quietest. The pitch number is related to the standard
musical scale by the table given in the User Guide, while duration takes a
value in the range 0 to 254 (255 being forever) to specify the duration of
the note in twentieths of a second.

The sound source will depend upon the voice which has been assigned to
the channel specified in the SOUND command. The 'after' parameter,
which is not essential, is used to specify the number of beats to be executed
before a sound is to be made audible. As such it may be used to define the
position of each note within the bar.

The program in listing 11.1 draws various of these aspects together. This
is no musical masterpiece, but does serve to show some of the essential
elements. If you run this program you will find it repeatedly plays the first
three notes of a well known tune. The program starts by setting the TEMPO
and BEATS count, and the maximum number of active voices. The voices

86

Sound

themselves, selected from the built-in set, are allocated to four different
channels.

Listing 11.1 Simple tune playin$ program.

10 REM >Chapll-1
100 TEMPO &1000
llO BEATS 200
120 VOICES 4
130 VOICE l,"StringLib-Soft"
140 VOICE 2,"StringLib-Pluck"
150 VOICE 3,"StringLib-Steel"
160 VOICE 4,"Percussion-Medium"
170 REPEAT
180 REPEAT UNTIL BEAT=O
190 SOUND 1, -15, 69, 5, 50
200 SOUND 2, -15, 61, 5, 100
210 SOUND 3, -15, 53, 5, 150
220 SOUND 4, -15, 200, 5, 50
230 SOUND 4, -15, 200, 5, 100
240 SOUND 4, -15, 200, 5, 150
250 REPEAT UNTIL BEAT<>O
2 60 UNTIL FALSE
270 END

The REPEAT at line 170 marks the start of the main loop in the program.
The following REPEAT ... UNTIL statement at line 180 serves to synchronise
the start of the bar for all channels, and the subsequent SOUND statements
specify the notes to be played, and with the 'after' parameter, their
relative positions within a bar of music. Thus, if BEATS has been specified
at 200, an 'after' parameter of 50 will ensure a note sounds a quarter of
the way through a bar.

Lastly, the REPEAT ... UNTIL at line 250 ensures that the end of the bar is
reached before the whole process is repeated.

Star Commands
As previously stated, many of the finer points of music generation on the
Archimedes are best, or only, handled through Operating System (SWI)
calls. Some of these are also provided in the form of star commands, and
these are detailed briefly below for completeness.

•AUDIO ON/OFF This performs the same functions as BASIC' s
SOUND ON/OFF instruction, ·switching the
whole sound system on or off.

87

BASIC V

•AUDIO ON/OFF

"SPEAKER ON/OFF

"STEREO c,n

"SOUND c, a, p, d

•TEMPO n

•QSOUND c, a, p, d, b

This perfonris the same functions as BASIC' s
SOUND ON/OFF instruction, switching the
whole sound system on or off.

This controls the internal speaker, but leaves
the external stereo output unaffected.

Like •AUDIO this has the same purpose, and
the same parameters, as the equivalent BASIC
instruction.

This provides a volume control for the sound
system where the value of 'n' may range
from 1 (low volume) to 127 (high volume).

Again, this is exactly the same as the SOUND
statement in BASIC except that the additional
'after' parameter is not permitted.

Once more, a duplication of the similarly
named BASIC instruction.

This command is the same as "SOUND but this
time includes the additional 'after'
parameter.

Sound is a highly complex subject, and anyone wishing to pursue it
seriously and write their own programs will need to refer to the detailed
section in the Programmer's Reference Manual. Be prepared for some
machine code programming, or at the very least to handle a multitude of
appropriate SWI calls to achieve the sophisticated sound output of which
the Archimedes is capable. If you just want to use the sound system, then
the Music Editor included on Acorn's Welcome disc should serve the
purpose adequately.

88

12 : Commands

BBC BASIC, like many interpreters, has always included a number of
commands within its syntax, such as RUN and SA VE. Such commands are
indistinguishable from BASIC instructions, being written solely in upper
case. The difference is more one of user perception. Generally speaking,
such commands apply to the program as a whole, such as the two
examples given, or in some way control or change the environment
containing the program. EDIT, for example, completely changes the
context of a program. In practice, many of these so-called commands may
also be included as part of a program. RUN, mistakenly in my view, is quite
often included in this way.

BASIC v provides a number of additional commands compared with
previous versions of BBC BASIC, and a number of others have been changed
or extended in their function. These commands are as follows.

APPEND

EDIT

HELP

This command may be used to append any saved file to
another program already in memory. The file name may be
given explicitly as a string in quotes, for example, APPEND

"Functions", or contained in a specified string variable such as
APPEND Prog$. If the specified file contains a BASIC program in
tokenised format, then the line numbers and any references to
them in the appended program will be renumbered to follow
the last line of the program already in memory. This is much
better than the previous use of "SPOOL and •EXEC to achieve the
same result, though these two commands may still have a part
to play on occasion.

In BASIC v I the EDIT command calls the ARM BASIC Editor with
the current program loaded, ready for editing. Shift-f4 returns
from the editor back to BASIC. The editor is described in the
User Guide and provides an easy-to-use facility for BASIC
programmers.

This command by itself gives information about the current
BASIC program, such as size in bytes. The command 'HELP .'

89

BASIC V

LVAR

SAVE

displays all BASIC keywords, while HELP followed by an initial
letter gives all keywords beginning with that letter. HELP

followed by an individual keyword gives a description of that
keyword.

When developing or debugging a program this command can
be useful, as it displays the current state of all the inbuilt
integer variables and all other variables used in your program.
It also lists the procedures and functions called by the
program, indicating the type of each parameter, real, integer
or string, and the first lines of any loaded procedure and
function libraries (see Chapter Five). It also lists arrays
together with their dimensioned size. The limitation in the use
of L v AR which, in some circumstances, could be to your
advantage, is that only those variables, procedures and
functions referenced prior to the LVAR call will be listed. So,
for example, only those procedures and functions which have
been called will appear, not necessarily all the procedures and
functions defined in a program.

If the first line of a program consists of a REM statement
followed by '>', then the SA VE command, without any further
specification, will save the current BASIC program under the
file name specified after the '>'. For example, starting a
program with:

10 REM >Graphl

would result in the SA VE command saving the program using
the name Graphl. This is a most useful facility. Editing the file
name as program development progresses enables different
versions to be named and saved quite easily. Note that no
warning is given if this use of the SA VE command overwrites
an existing file with the same name.

LISTO The LISTO command now works as follows, depending on the
number following the command:

0 no changes
bit 0 = 1 a single space after the line number
bit 1 = 1 indent any structures
bit 2 =1 split when':' encountered

90

TWIN

TWINO

TRACE

bit 3 =1
bit4 =1

don't list line numbers
list tokens in lower case

Commands

Calls the Twin text editor to edit the current BASIC program.

Calls the Twin text editor with a LISTO capability (ie, the
TWINO command should be followed by a number as defined
for LISTO).

The TRACE command has been enhanced to trace procedures
and functions, and to trace in single-step mode. Various single
parameters may follow the TRACE command as detailed below:

TRACE <expression>

will display all line numbers encountered below (that is after)
the value of <expression>.

TRACE ON

will trace all line numbers, and is thus equivalent to TRACE

65279, the highest possible line number.

TRACE PROC

will display the name of each procedure or function
encountered.

TRACE STEP <expression>
TRACE STEP ON
TRACE STEP PROC

are similar to the first three variations on TRACE described
above except that when a line number, or procedure or
function name, has been displayed, execution of the program
in question pauses until a key is pressed.

TRACE OFF

simply switches the trace facility off.

The TRACE command can be included anywhere within a
program, and is a useful aid for resolving some of the knottier
problems which may occur during program development.

91

·I
j

13 : ARM Assembler

Although this book is not concerned with programming in ARM assembler
as such, it is appropriate to look at how assembler may be incorporated
into BASIC programs, and how assembled routines may be called. BBC BASIC

has always included a full assembler as part of its facilities, so we shall
concentrate on the changes that have come about through the use of ARM

assembler (instead of the 6502 assembler of earlier BBC Micros), and its
incorporation into BASIC v.

Embedding ARM assembly language code in a BASIC program follows the
same pattern as before. An area of memory must be defined for the
assembled code using the DIM statement. The assembly code is enclosed in
square brackets, normally in a FOR. .. NEXT loop which makes two passes
through the code. The typical outline of this is shown below:

DIM code area% 400
FOR pass%=0 TO 3 STEP 3
P%=code area%
[-

OPT pass%

NEXT pass%

In addition to the use of P% to act as a program counter during assembly,
the variable 0% can additionally be used so that the code is assembled to
run from an address different to that at which the code is being assembled.
In that case, P% is set to the address that the code will be run from, and 0%
is set to the address at which the code will be (temporarily) assembled.
This all follows exactly the same format as in previous versions of BBC

BASIC.

If the machine code routine is to be called from BASIC, and a return made
back to BASIC, then the address stored in register R14 should always be used
to return to BASIC. Typically this would be effected by specifying MOV PC,R14
as the last executable instruction.

BASIC v also provides a number of assemb~er directives, but because we
are now dealing with ARM rather than 6502 assembler, there are some

92

ARM Assembler

differences compared with those used previously. Of course, their
functions are broadly the same as before, the facility to insert specified
values, characters and strings as part of the assembled code. The
directives now available are as follows:

EQUB <int> Define one byte of memory from the LSB (least
significant byte) of the integer value 'int'.

EQUW <int>

EQUD <int>

EQUS <string>

ALIGN

Define two bytes of memory from 'int'.

Define four bytes of memory from 'int'.

Load between 0 and 256 bytes of memory with the
given string.

Align the values of P% (and 0%) to the next word
boundary.

ADR <reg>,<addr>Assemble an instruction, to load the specified address
into the given register (Ro to R 1 s) in position
independent format.

The first four directives have alternative mnemonics
(OCB, DCW, OCD, and ocs respectively) which may be
used in place of those given above. These directives
are very similar to their 6502 equivalents. The values
or strings specified may be expressions. The ALIGN
directive is used, after EQUS for example, to ensure
that the next instruction starts on a word boundary.
The Archimedes is a • 32-bit (four bytes) machine,
compared to the 8 bits of the 6502. This can be quite
important.

The ADR directive lopks very much like an ARM
assembler mnemonic,• but this is not the case. Its
purpose is to generate an assembled instruction as
part of the resulting machine code program which,
when executed, will cause the address specified in the
directive to be loaded into a particular register. The
address is in position independent format, which
means that it is specified as an offset from the current
value of the PC (program counter). Thus:

ADR RO,data

93

BASIC V

will load the address at which 'data' is assembled into
RO.

LDR RO,data

will load the value at address 'data' into RO.

All of the above information is covered in some detail in Part Two of the
Programmer's Reference Manual. Another useful reference is 'Archi
medes Assembly Language' by Mike Ginns, ruso published by Dabs Press.

Calling Machine Code Routines
BASIC programs can call machine code routines by using USR or CALL, much
as with earlier versions of BBC BASIC. USR is the simplest by far of these two
calls. It is effectively a function whose only parameter is the start address
of the machine code routine being called, and which returns the value left
in the first register, RO. No parameters other than the address of the
routine itself are allowed.

The CALL instruction is more comprehensive, allowing parameters as well
as the start address to be specified. The parameters are accessed through
a parameter block which must be set up by the BASIC program before
executing CALL. On entry to the machine code routine, the registers are set
up as follows:

Register
RO-R7
RB

R9
RIO
Rll
R12
R13
R14

Set up as
Values of built-in integers A%-H%
Pointer to BASIC's workspace
(start address referred to as ARGP)
Pointer to a list of L-values of the parameters
Number of parameters
Pointer to BASIC's string accumulator
Pointer to current BASIC statement
Pointer to BASIC's stack
Return address for BASIC

On the Archimedes, up to eight values may be passed to the first eight
registers (Ro to R7) by assigning them to .the appropriate integer variables.
This is equally valid for routines which are accessed with USR. This means
there are two ways of passing values to a machine code routine which is

94

J\~ J\ssell\bler

CALLed. Using A% to H% is certainly an easy way of entering initial values
into any of the registers RO to R7 for routines called by either USR or CALL.

Variables that are specified as parameters following CALL can be used to
both supply values to the machine code routine, and as a means for the
routine to return values. Note too, that if the routine called was to change
the values of any variables passed as parameters, then these will retain
their new values on a return to BASIC.

Writing machine code routines is a book in itself, and unravelling the
parameters and other information can be quite a complex and daunting
task. The following sections deal with what is involved, but unless you are
familiar with parameter passing, on the 6502-based BBC micro for
example, you may well wish to skip the rest of this chapter.

For a simple approach, use A% to H% to pass values to a routine. To return
values, use indirection operators to access memory locations defined
within the assembler routine to which the results have been assigned. The
following, very simple, example adds together the contents of RO and Rl
(A% and B% in the calling program), and leaves the result at the address
'result' .

. start
ADD R2,R0,Rl
STR R2,result
MOV PC,R14
.result
EQUD 0

If this were embedded in a BASIC program, and assembled as explained
previously, it could then be called as in the following example:

A%=123
B%=456
CALL start
PRINT !result

Several results could be left in a table starting at 'result', and then
accessed as:

PRINT !result
PRINT result!4
PRINT result!8

and so on. Of course, if a routine is only going to return a single value, it
may be best to assign this to RO and use the USR function which returns the
contents of this register. The routine above could have been written:

95

BASIC V

.start
ADD RO,RO,Rl
MOV PC,Rl4

and called by typing:

A%=123
B%=456
PRINT USR(start)

Using CALL with Parameter Passing.
We will now examine the details of parameter passing using the CALL
statement. This is also covered in the User Guide, under the keyword
CALL, in some detail, but this manual gives virtually no other information
on ARM assembler at all. You will need to refer to the Programmer's
Reference Manual, or to any of the books on this subject, for more
detailed information and guidance.

Refer once again to the table showing the settings of the 16 registers on
entry. The L-value of a variable is the address in memory at which the
value is stored. R9 is a pointer to a table, held in reverse order, consisting
of two words for each parameter passed, its L-value and its type. The
range of possible types is listed below.

BASIC Type Address points to
?name 0 byte-aligned byte
!name 4 byte-aligned word
name% 4 word-aligned word
name%(n) 4 word-aligned word
I name 5 byte-aligned 5 bytes
name 5 byte-aligned 5 bytes
name(n) 5 byte-aligned 5 bytes
name$ 128 byte-aligned 5 bytes

name$(n) 128 byte-aligned 5 bytes

$name 129 byte-aligned bytes

name%() 256+4 word-aligned word
name() 256+5 word-aligned word
name$() 256+128 word-aligned word

96

Comment
byte value
four-byte integer
four-byte integer
integer array element
five-byte real
five-byte real
real array element
address (4 bytes) and
length (1 byte) of string
address (4 bytes) and
length (1 byte) of string
array element
string terminated by
ASCII 13
pointer to integer array
pointer to real array
pointer to string array

;\~ J\ssell'lbler

For each variable passed as a parameter, the table shows the type number
and the information pointed to by the associated address. Any of the data
types recognised by BASIC, from a single byte to a whole array, may be
passed as a parameter. For whole arrays, the address provides a pointer
to a list of all the values needed to access the array from within the called
machine code routine. If the array has not previously been dimensioned,
the pointer (word-aligned word) contains zero. Otherwise, the list of
words pointed to by the word pointer is as follows:

word +O first dimension limit (+ 1)
word +4 2nd dimension limit (+ 1)

word+n
word+n+4
word+n+8

0
total number of entries in array
the zero element of the array

The dimension limits are the limits to which the array was dimensioned in
a DIM statement, with 1 added in each case. The list of limits is terminated
by a zero word. The following two words contain the total number of
possible entries in the array, and the value of the first (position O) element.

Register R14 contains the address of a branch instruction to return to
BASIC. The last instruction in a machine code routine, MOV PC,R14, copies
that address to the PC, which causes the branch instruction to be executed
to effect the return. The words following that specified in R14 contain
various values relating to the current BASIC program as follows. Each
word is an offset from ARGP whose location is stored in RS.

IV--0

Register
R14
R14+4
R14+8
R14+12
R14+16
R14+20
R14+24
R14+28
R14+32
R14+36
R14+40
R14+44

Setup as
return address to BASIC
string accumulator
current value of PAGE
current value of TOP

current value of LOMEM (start of BASIC variable table)
current value of HIMEM (BASIC end of stack)
limit of available memory (MEMLIMIT)

start of free space
current value of COUNT
not used
exception flag (contains byte-aligned bytes)
current value of WIDTH

97

BASIC V

Locations from R14+48 onwards contain the addresses of a set of internal
routines as follows.

VARIND

STORE A

STSTORE

LVBLNK

CREATE

EXPR

MATCH

TOKEN AD DR

returns the value and type of a parameter

converts between formats, eg, integer and real

store a string

obtain address and type of variable for VARIND

create a variable if LVBLNK fails

evaluates an expression supplied as a string

analyse source string lexically

returns a string corresponding to a given token

We have been getting into progressively deeper waters here, and are now
well and truly into the realms of the machine code programmer. We will
therefore call a halt, and refer the reader to the Programmer's Reference
Manual and other books on this subject for more information.

98

14 : Operating System Calls

The Archimedes Operating Systems, Arthur and RISC OS, provide a wealth
of routines that may be called by the user program, even from within
BASIC. In fact, the only way to exploit the full potential of the machine is by
making use of these detailed routines. Some Operating System functions
are packaged up in BASIC for convenience, such as the VDU calls and the
PLOT commands. Further functions are available in the form of star
commands, though for greater flexibility these are often called from
within BASIC programs using the OSCLI call.

However, to make full use of all the system functions available, they must
be called more directly. Previous versions of BBC BASIC relied on the use of
CALL (and sometimes USR) to access system functions, but BASIC v provides
a new, general purpose call to do this. This is the SYS function, and it has
its direct counterpart in ARM assembler in the form of the SWI call.

A SWI call is a SoftWare Interrupt. When a SWI call is executed, the ARM

processor leaves the current program and jumps to a fixed location in
memory. This in turn contains a branch instruction into the Operating
System ROM where the SWI call is decoded and the correct routine entered,
with appropriate parameters. Once execution of the call is complete,
control is returned to the user's program.

Every legitimate SWI call has a number to identify it, but the name of the
SWI can be used instead (it must be precisely specified including use of
upper and lower case characters), and this is much to be preferred for
readability. The name must be enclosed in inverted commas, as with any
string. The SWI call also allows parameters to be passed to the routine
called, and provides for information to be returned.

SYS Calls
In BASIC v, SYS is the exact counterpart of the SWI call, and should be used
to access all Operating System routines. The general format of a SYS call is
as follows:

99

BASIC V

SYS <name/number>,<parameters> TO <variables> ;<flags>

Again, note that the name of the SYS call, the same name as for the
corresponding SWI call, must be in inverted commas. Up to eight 'input'
parameters may be specified immediately following the SYS call name or
number, and these values are assigned, in order, to the first eight
registers, RO to R7. If a parameter supplies a numeric value, this is
converted to integer format and stored in the corresponding register; if
the parameter supplies a string, a zero byte is added to the end of the
string, and the string stored on BASIC's stack at a word-aligned start
address, and a pointer to the string placed in the appropriate register.

Following the keyword TO, a list of 'output' variables can be included,
which will be used to return values to the calling program. These operate
as the counterpart of the input parameters, that is, each variable in tum is
associated with the registers RO to R7. If the variable is numeric, the value
in the corresponding register is returned in the appropriate format, real
or integer, to the variable. If the variable is of type string, the contents of
the corresponding register are treated as a pointer to a string stored in
memory, and this string is then assigned to the string variable.

The first parameter is separated from the SYS function name by a comma,
and subsequent parameters are separated from each other by further
commas. For the output variables, the first is separated from the 'TO' by a
space, the remainder by commas. Both parameters and variables in
sequence may be omitted provided the commas are included. Therefore:

SYS "DummyFunction",,b,c,,e TO A,,,,E

would result in the input values supplied by b, c, and e being linked to
registers Rt, R2 and R4, with the output variables A and E being linked to
registers RO and R4. Notice, on the input side, the comma immediately
following the SYS function name indicating that the value which would be
linked to register RO has been omitted. By this means, any of the registers
RO to R7 can be linked to input parameters or output variables as required,
even if intermediate registers are not used. Depending on how some SYS
functions are used, you may find that you use different register
combinations in different contexts with the same SYS call. Some more
examples of SYS call syntax are given at the end of this chapter.

The same variables may be included on both the input and output sides of
the SYS call, and will result in the input parameters being overwritten. The
only point to watch, if this is followed, is that a return string cannot

100

Operating System Calls

exceed the length of an input string where the same variable is to be used
for both.

You will find, in practice, that some SYS calls need no parameters at all,
some need input parameters, some output parameters and some both. In
addition, if a variable is specified following a semi-colon at the end of a
SYS call, this will be set to the processor flag bits on return. These are the
bits NZCV from the ARM status register. The input parameters may be
values or expressions, including simple variables, but the output
parameters, because they are used to return values, must always be
specified as variables.

Three particular SWI, or SYS, calls are worth mentioning individually. The
call os_CLI is directly equivalent to oscu, and passes a string to the
Command Line Interpreter. The calls OS_Byte and OS_Word each provide a
variety of different functions, and are provided in this form for the sake of
compatibility with similarly named calls on the BBC Micro and Master
series.

All the SWI calls are documented in the Programmer's Reference Manual,
and this is essential reading if you want to take full advantage of them.
Remember also that some SWI calls directly reference routines in the
Operating System ROM, while others call routines in relocatable modules.
In practice the two are indistinguishable, and all such calls can be thought
of as system calls.

As an indication of what can be achieved, I have listed some of the SWI
calls below.

os_Byte,13
os_Byte,14
os_ GenerateEvent
os_SpriteOp

os_ReadPalette

Wimp_Initialise
Wimp_ Create Window
Wimp_ Create Icon
Wimp_DeleteWindow

Disable event
Enable event
Generate an event
General sprite call providing more
options than star commands alone
Read red, green, blue values for given
logical colour
Initialise Wimp manager
Creates a window
Creates an icon
Deletes a window definition

101

BASIC V

Wimp_OpenWindow
Wimp_Poll

Display window on screen
Check for any changes to windows

There are many more SYS calls to the Wimp manager.

Font_FindFont Get pointer to a font
Font_LoseFont Remove font definition

Again there are many more SYS calls to the Font manager and also to the
sound scheduler.

Finally, I have included a number of SYS calls taken from working
programs to show how they might appear within a program.
SYS "Wimp_OpenWindow",,offset

SYS "Wimp_CreateWindow",,block% TO handle

SYS "Sound_QSchedule",Beats%,&F0401C6,A%

SYS "Sound_InstallVoice" TO ,NVoices%

SYS "OS_File", 5,F$ TO F%,, ,,C%,A%

SYS "OS_ReadPalette",pixel,16 TO ,,foreground,background

Notice the ways in which commas have been used in the above examples
to select which registers are to be used for parameter passing.

102

15 : Miscellaneous Changes

This chapter contains a miscellaneous collection of bits and pieces of
information related to BASIC v and its differences from previous versions
of BBC BASIC, which could not readily be fitted into any of the previous
chapters. If you cannot find what you are looking for elsewhere in this
book, then you will probably find it here.

LINE INPUT
The statement LINE INPUT is entirely equivalent to the existing INPUT LINE.

If the input variable is of type string then all the user's input up to, but not
including, Return will be assigned to that variable. If the input variable is
numeric, then only a single value will be taken from the input stream.

ON and OFF
In the past, several different versions of VDU23 calls were discovered for
switching the flashing cursor on and off. Later, with the advent of the
Master and Compact, these calls gained respectable legitimacy. BASIC v
has taken this process one stage furt.her by providing simple keywords, ON
and OFF, to perform this essential function.

However, the OFF action is not permanent. As well as reappearing when a
mode change takes place, cursor editing will also restore the flashing
cursor to the screen.

QUIT
To leave BASIC and interact with Arthur and RISC OS directly, use QUIT.

Incidentally, to return to BASIC the abbreviation 'B.' will no longer suffice,
at least 'BA.' is now needed. Quitting to go to the system can sometimes
prove useful. For example, if you attempt to load a relocatable module
from within BASIC, you may encounter the message "Insufficient RMA

space", but if the RMLOAD command is executed from the system the

103

BASIC V

problem is unlikely to arise as, in that context, the configured RMA space
limit is ignored.

END
This keyword now has a second purpose, and may be used as a function to
return the address of the limit of memory used by a program and its
variables. BASIC always maintained this information in a zero page
location, but it is now available through END rather than by dubious
peeking at the appropriate location.

Mode Changes in Functions
and Procedures
Mode changes can now be included in procedure and function definitions
without any problems.

Improved PRINT Accuracy
The accuracy has now been improved when using PRINT and STR$ with
numbers. For example, 0.05 now prints as 0.05 and not as 5E-2 as was
previously the case.

Increased Line Number Range
The maximum line number for BASIC programs has been increased from
32767 to 65279 to cater better for larger programs. In memory, a program
now terminates explicitly with two bytes, &OD &FF, whereas any byte
with the top bit set would have marked. the end of a program previously.
Some program binary images created on earlier BBC micros may generate
a ''Bad program" error when loaded. This can be corrected by using •LOAD
and locating and correcting the final byte. This is most unlikely to be a
problem for the majority of programs.

104

Miscellaneous Changes

Improved COUNT
Tabulation has been improved by using a 32-bit value for COUNT. This
function keeps track of the current position within a line of text displayed
or printed out.

Syntax Checking on Entry
Lines of BASIC entered with a line number are now subjected to some
interactive syntax checking. The checks cover mostly mis-matched
brackets, quotes and the like. Any errors detected are reported
immediately.

Use of TIME
The use of the pseudo-variable TIME, which uses 4 bytes, particularly when
being assigned to, no longer affects the Operating System's own real-time
clock, which uses 5 bytes. ·

105

A : New Keywords Present
inBASICV

APPEND
BEAT
BEATS
CASE
CIRCLE
CIRCLE FILL
DRAW BY
ELLIPSE
ELLIPSE FILL
ENDCASE
ENDIF
END WHILE
FILL
FILL BY
HELP
INSTALL
LIBRARY
LINE
LINE INPUT
LOCAL DATA
LOCAL ERROR
LVAR
MOD
MOUSE
MOUSE COLOUR
MOUSE OFF
MOUSE ON
MOUSE RECTANGLE
MOUSE STEP
MOUSE TO
MOVE BY
OF
OFF

106

ON
ON ERROR LOCAL
ORIGIN
OTHERWISE
OVERLAY
POINT
POINT BY
POINT TO
QUIT
RECTANGLE
RECTANGLE FILL
RESTORE DATA
RESTORE ERROR
REPORT$
SUM
SUM LEN
SOUND OFF
SOUND ON
STEREO
SWAP
SYS function
TEMPO
TINT
TRACE PROC
TRACE STEP
TWIN
TWINO
VOICE
VOICES
WAIT
WHEN
WHILE

B : Keywords with New
Meanings in BASIC V

BPUT
COLOUR
DIM
EDIT
ERROR
GCOL
GET$
LEFT$
LIS TO
MID$
RETURN
RIGHT$
SAVE
SOUND
TRACE

107

c • Screen Modes

~ •

Two Colour Modes
Mode Text Graphics Screen

Columns Rows x y Size

0 80 32 640 256 20k
3 80 25 text 40k
4 40 32 320 256 20k
6 40 25 text 20k
18 80 64 640 512 40k (1)

23 144 56 1152 896 126k (2)
25 80 50 640 480 37.Sk (3)

Four Colour Modes
Mode Text Graphics Screen

Columns Rows x y Size

1 40 32 320 256 20k
5 20 32 160 256 20k
8 80 32 640 256 40k
11 80 25 640 256 40k
19 80 64 640 512 80k (1)
26 80 50 640 480 75k (3)

Sixteen Colour Modes
Mode Text Graphics Screen

Columns Rows x y Size

2 20 32 160 256 40k
7 40 25 teletext 80k
9 40 32 320 256 40k
12 80 32 640 256 80k
14 80 25 640 256 80k

108

Miscellaneous Changes

16 132 32 1056 256 132k
I

17 132 25 1056 256 132k
20 80 64 640 512 160k (1)

27 80 50 640 480 150k (3)

256 Colour Modes
Mode Text Graphics Screen

Columns Rows x y Size

10 20 32 160 256 80k
13 40 32 320 256 80k
15 80 32 640 256 160k
21 80 64 640 512 320k (1)
24 132 32 1056 256 264k
28 80 50 640 480 300k (3)

Notes:

l. Multiple scan-rate monitors such as NEC Multisync.

2. High resolution monochrome monitors.

3. VGA monitors with suitable sync connections.

109

D: Dabhand Guides Guide

Books and Software for the Archimedes
Dabs Press already have a list of books, software and games for the
Archimedes and this is being expanded to include a wide range of
Archimedes products. Those already in an advanced stage of preparation
are detailed in the following pages. Please note that all details are correct
at the time of writing but are subject to change without notice. Please
phone or write to confirm availability before ordering.

All future publications are in an advanced state of preparation. Content
lists serve as a guide, but we reserve the right to alter and adapt them
without notification. Publication dates and contents are subject to change.
All quoted prices are inclusive of VAT (on software; books are zero-rated),
and postage and packing (abroad add £2 or £10 airmail). All are available
from your local dealer or bookshop or, in case of difficulty, direct from
Dabs Press. If you would like more information about Dabs Press books
and software, then drop us a line at 5 Victoria Lane, Whitefield,
Manchester, M25 6AL, and we'll send our latest catalogue.

Archimedes Books
Archimedes Assembly Language
By Mike Ginns. Price £14.95. Spiral bound 368 pages.
ISBN 1-870336-20-8. Available now. NEW Second Edition
Programs disc £9.95 - £21.95 inclusive when ordered with book.

This popular and informative book is now in its Second Edition and
includes coverage of RISC OS.

This is a complete guide to programming the Archimedes in machine code.
Mike Ginns provides a clear, step-by-step account of using the assembler
using simple, but useful, programs and provides the practice to illustrate
the theory, thus making it ideal for the beginner. But this guide goes much
further. For instance, it explains how to use the Debugger and there is a

110

Dabhand Guides Guide

large section on implementing BASIC equivalents in machine code, plus
coverage of Arthur and RISC OS and using SWis, WIMPS and fonts.

The powerful Operating System is covered with details of how to access
its many facilities from the machine code level. Within this are details of
using graphics, sound, windows, the font painter and the mouse, all from
within machine code programs. To make the transition from BASIC to
machine code as painless as possible, the book contains a large section on
implementing BASIC statements in machine code.

A programs disc accompanies the book which contains all of the various
programs used in the text, plus 11 extra utility programs including a
disassembler, various memory manipulators and a disc sector editor. The
programs disc is supplied with its own 16 page manual.

Reviews:

Rise User, July I August 1988: "The style of the text throughout the book is
easy to read ... I would recommend Archimedes Assembly Language."

Archive, August 1988: "The actual explanations are lucid ... Overall then,
this is a comprehensive and wide ranging book which stands up well as
both a tutorial on assembly language and as a guide to the programming
environment and facilities provided by Arthur. I recommend it ... "

Archimedes Operating System
By Alex and Nie van Someren. Price £14.95. Spiral bound 320 pages.
ISBN 1-870336-48-8. Available NOW.
Programs disc £9.95 - £21.95 inclusive when ordered with book.

This guide covers both the Arthur and RISC OS Operating Systems and
explains how the components of the Operating System work giving the
reader a real insight into getting the best from the Archimedes whether

· it's a A305, A310, A410 or A440.

The Relocatable Module system is one of the many areas covered in the 25
chapters - its format is explained, and the information necessary to
enable you to write your own modules and applications is provided. This
tutorial approach is repeated throughout the book which includes many
useful programs for you to try.

The discerning user will revel in the wealth of information covering many
aspects of the OS including:

111

BASIC V

• Writing Applications
• VIDC, MEMC and IOC

•Sound
•The Voice Generator
• SWis
• Vectors and Events
• Command Line Interpreter
• The FileSwitch Module
• Floating Point Model
• and much more

In short Archimedes Operating System: A Dabhand Guide is the table-side
companion for all Archimedes users.

C : A Dabhand Guide

By Mark Burgess. Price £14.95. Perfect bound 512 pages.
ISBN 1-870336-16-X. Available now. NEW Second Edition
Programs disc £9.95 - £21.95 inclusive when ordered with book.

PCW Said: " .. . I only wish it had been available when I was learning C."

A behind-the-scenes storm has quietly been sweeping over the micro
computer world during the last few years: it is the C programming
revolution. So much so that all the popular micros now have C compilers
available to them.

Spread over an amazing 512 pages, this thoroughly readable Dabhand
Guide leaves you in no doubt as to the natural language in which to
program your computer. From elementary principles, PCW contributor
and author, Mark Burgess introduces the C philosophy in a highly
readable, no nonsense manner. Step by step, page by page you ascend the
C ladder with simple illustrated and documented programs.

But why should you want to learn Cat all? The answers are many, not
least compatibility, portability and speed. C is a general purpose
language. It can be used to write any kind of program from an accounting
package to an arcade game. It has sophisticated facilities built in which
are quite unlike those of any other language. The range of C commands
span from a higher level than BASIC to as low a level as machine code. C
holds nothing back from the programmer - there are virtually no
limitations.

112

Dabhand Guides Guide

C is a standard language - programs the world over are written to this
standard and in such a way as to allow them to be transferred to other
machines and run again, in many cases with little or no editing required. A
source program written in C on the Amstrad PC, for instance, would
generally compile and run quite happily on the Archimedes, the Amiga, or
any other PC for that matter.

Speed - a vital factor in the running of programs - is assured because a C
program is compiled into ultra fast machine code. Write your very own
commands in a friendly environment and let the C compiler transform it
into machine code - no assembly language need be known! And what's
more the original C source program remains intact for re-editing or fine
tuning as you require.

Thirty-seven chapters, six appendices, a glossary and a comprehensive
index make C: A Dabhand Guide probably the guide to programming in
C. Included is a chapter on programming in Con the Archimedes, (and
BBC and the Master 128/Master Compact for that matter).

Unique diagrams and illustrations help the reader to visualise programs
and to think in C. Assuming only a rudimentary knowledge of computing
in a language such as BASIC or PASCAL, the reader is provided with a
grounding in how to build up programs in a clear and efficient way.

To help the beginner a complete chapter on fault finding and debugging
assists in tracing and correcting both simple and complex errors.

A Programs Disc is available for · most of the major micros, and this
contains the listings in the book plus several other useful utilities including
an adventure game and an indexer. The extra programs are documented
in an informative manual.

The first review of C: A Dab hand Guide appeared in Beebug Magazine in
June 1988 and it had this to say: "The 512 pages cover all important
aspects of C. .. the tone is friendly and the explanations are full and easy to
understand without being patronising ... the program structure diagrams
which illustrate the larger programs are very helpful ... the book being full
of good advice about program design and layout. In conclusion, then, a
very good, reasonably priced introduction to C for the non-specialist."

BV-H 113

BASIC V

Archimedes Software
Archimedes BASIC Compiler
By Paul Fellows. Price £99.95 Inclusive. Available Now NEW Version 2.
Two discs. 148 page Reference Guide, 56 page User Guide.
Demo Disc available for £2. Refundable on full order. Supports over 100
BASIC v commands and supplied with sample programs.

ABC: The fast and powerful way to write instant machine code!

If you want it all - speed, power and performance, then look no further
than the Archimedes BASIC Compiler. ABC takes programs written in BASIC

v and transforms them into superfast ARM machine code. Speed increases
of 4-5000% are possible depending on the program being compiled.

A&B Computing said: "ABC is a vital part of the programmer's toolbox, it
puts compilers on other systems to shame. Unquestionably one of the most
impressive pieces of software I have yet seen running on the Archimedes."

Archive Magazine said: "I can tell you now, I am very impressed. This is a
superb package, which I thoroughly recommend ... "

Main Features:

114

• Converts BASIC v programs to ARM machine code
•Completely stand-alone code-does not access BASIC ROM

• All compiled code is position independent
• Speed increases of over 5000% possible
• Code size ratio approx. 1:1 (against tokenised source)
• Target program size limited only by disc space
• Conditional compilation supported
• Supports floating point arithmetic (using FPE)
• CALL and USR parameter passing greatly enhanced
• New pseudo-variables included
• Runs on any Archimedes
• Friendly window-based control system
•Relocatable module making option
• Application, utility and service module types supported
• Full in-line assembler support
• Compiles using disc or RAM or both
• Execute immediately after compilation
• Large range of compiler directives

Dabhand Guides Guide

• Manifest constants implemented for extra speed
• Comprehensive and interesting examples disc
• Intelligent disassembler produces source of compiled code
• No additional runtime modules required
• No intermediate code system ·
• 148pp Reference Guide and 56pp User Guide
• ARM fp processor compatible
• RISC OS and Arthur 1.2 compatible
•Technical support to registered users
• Absolutely no royalties to pay on compiled code

Version 2 now supports the following additions and improvements:

•Double/Extended precision floating point
• RETURN parameters
• Multiple-ENDPROCs and function returns
• LOCAL Errors
• Scope rules
•Extended Compiler Directives

ABC is written by Paul Fellows, head of the Acorn team which wrote the
original Archimedes Operating System. Complete specification available
on request.

Instigator
By Mike Ginns. Price £49.95. Available March 1989.

The RISC OS Compatible Archimedes System Manager

Instigator is a powerful extension to your Archimedes Operating System
- Arthur 1.2 and RISC OS - and the ideal foil for programmers and
software developers alike. Containing over 80 *commands this module
provides a wide range of exciting and invaluable system aids.

Instigator provides an extremely powerful working environment for the
user. It allows tasks be carried out quickly and efficiently. You get on with
the task in hand, Instigator provides the necessary information for you
and works with the Operating System to carry out your wishes, whether
you are using application packages or programming the machine itself.

Its new commands and facilities will prove indispensable to any serious
user of the Archimedes system. The commands make new operations

115

BASIC V

possible, help to simplify the use of existing features and give the user
unprecedented control over the machine.

Instigator Commands

Here is a list of just some of the commands provided by Instigator:

*Medit, *Mmove, *Mfill, *Mfind, *Diss, *Tidy, *Compare, *Blist,
*Dimmer, *Half, *Full, *VIDC, *OpenWindow, *CloseWindow,
*Files, *Confirm, *FSsave, *FSload, *Compress, *Uncompress,
*Printer, *CSD, *SetPath, *Paths, *UsePath, *KillPaths, *SavePaths,
*LoadPaths, *Return, *RGB, *Colours, *SetPalette, *Palette,
*ListPalette, *KillPalette, *SavePalette, *LoadPalette, *Keys,
*SaveKeys, *LoadKeys, *SaveOSVars, *LoadOSVars, *OSVars,
*SaveCMOS, *LoadCMOS, *!Status, *Dedit, *Dget, *Dput,
*Dsearch, *FreeMap, *LineEdit, *Archive, *History, *Cut,
*Definemode, *Hourglass, *Percentage, *Xinfo, *Smooth

Instigator is supplied on disc as a Relocatable Module. An examples disc is
included along with a 100 page User Guide.

Archimedes Games
Alerion

By Felix Andrew. Price £14.95. Available now.

"Alerion - an eagle without beak or feet is the Arcturian term for
impossible and the codename for your mission!"

"Your space-fighter is equipped with revolutionary new equipment, not
least a new radar cloaking system which renders you invisible, a
holographic targeting system and un-limited fire power."

"To succeed you task is quite simple ·· : blow the living daylights out of
anything that moves!"

Alerion is a welcome return to the most popular of computer games but
utilising the power speed and superb graphics only available on the
worlds fastest microcomputer - the Archimedes.

You have a bird's eye view of the action, your space-fighter flying over the
varied enemy terrain, scrolling effortlessly beneath you. This is done by
using the impressive 256 colour, high resolution mode. The game screen is
refreshed 25 times a second by using two 80k screens in a highly

116

Dabhand Guides Guide

innovative fashion, where one is dedicated to update while the other is
used solely for display purposes, there is therefore no messy screen
swapping.

As impressive is the use of digital sounds which were sampled from
professional sources giving the game an authentic feel. Alerion - A
mission impossible!

Arcendium
By David Acton and David Lawrence. Price £14.95. Available Now.

Arcendium provides three of the most popular board games on-disc for
you to run and play on your Archimedes. Draughts, Reversi and
Backgammon are the highly playable games displayed in the Archimedes
high-resolution Mode 12 using its full 16 colour capability to full effect.
Combined with 3D-effects, the end result is an addictive environment for
games playing for all the family.

All three games have varying levels of play. Two players in any
combination can play either against the micro or another player. When
playing the Archimedes the level of play is controlled by setting the time
that the computer is allowed to 'think' in steps from 0.1 to 60 seconds.

Other features include:

• sound and speech options
•playback
• on-screen hints
• 3D rolling disc with sound

And There's More!

• game load and save
• list moves available
• smooth animation

Dabs Press will be adding to their increasing range of quality books and
software for a wide range of micros during the next year. For the
Archimedes this includes ABC65 a 6502 cross compiler allowing 6502-based
code and Sideways RAM images to .be generated from BASIC v developed
and tested on the Archimedes. The stand-alone 6502 code can then be
transferred to a BBC B, B+, Master 128 or Master Compact computer.
ABC65 will be available in the second quarter of 1989.

Forthcoming for the Amiga is ACE, a BBC BASIC v and Amiga Microsoft
BASIC compiler bearing a strong resemblance to ABC but taking particular
advantage of the Amiga's own graphics and sound facilities. Books to be

117

BASIC V

released for the Amiga include AmigaDOS: A Dabhand Guide (which
covers releases 1.2 and 1.3), Amiga BASIC: A Dabhand Guide and Amiga
500 First Steps.

The zss will be supported with Z88: A Dabhand Guide and Z88 PipeDream:
A Dabhand Guide. The former is an indispensable guide for all zss users
while the later is the zss word processor's companion.

For the PC and Amstrad PCs our range of books will be extending to
include Ability Plus: A Dabhand Guide, Shareware: A Dabhand Guide and
Postscript: A Dabhand Guide. These will complement our titles WordStar
1512/Express: A Dabhand Guide and SuperCak 3: A Dabhand Guide.

For full details on these and other Dabs Press publications, write or phone
now for our free and extensive catalogue. See page 110 for address
details.

118

Index

& .. 11
o/o •.••••.•••••••••••••••••.•• 11
*CHANNEL VOICE .. 84
*POINTER .. 56, 59, 75, 79
*VOICES .. 84
16 colour modes ... 51, 52
256 colour modes .. 51, 57, 60
<< ... 12, 63
>> ... 12
>>> .. 12, 63
adding arrays .. 47
ampersand .. 11
AND .. 11
APPEND ... 89
arithmetic operators ... 10
arithmetic shift ; .. 12
array operations .. 47, 50
array references .. 32
array sorting ... 32
arrays .. 44
assembler directives .. 93
assembler in BASIC ... 92
assigning to an array ... 46
bar operator .. 11
BEAT .. ~ 85
BEATS ... 85
binary operators ... 11, 12, 47
block structures ... 21
border colour ... 56
BPUT# .. 18
CALL ... 14
CASE ... OF .. 21, 25, 41, 76
CIRCLE .. 69

119

BASIC V

CLEAR .. 35
CLG53
CLS 53
COLOUR ... 14, 52, 54, 57, 59
colour51
colour palette 54, 55, 60
copying an array 47
COUNT .. 105
cursor off ... 103
cursor on ... 103
declaring variables .. 10
decrementing variables ... 10
DIM ... 31, 32, 33, 45, 48, 97
dimensions, number of .. 45, 48
dimensions, size of : 45, 48
dividing arrays47
DRAW ... 68
EDIT ... 89
ELLIPSE .. 69
END .. 104
ENOCASE 25
ENDIF .. 23
END WHILE .. 21
EOF# .. .-..... 18
error numbers revised43
files ... 18
FILL .. 69
flashing colour57
FOR ... NEXT ... 21, 32
formal parameters 30
functions ... 29
GCOL .. : 53, 57, 62
GET$ 18
GOTO ... 35
HELP 89
HIMEM 35
IF ... THEN ... ELSE ... 21
incrementing variables .. 10
indirection operators ... 11

120

Index

INSTALL ... 35
LEFT$... 16
LIBRARY ... 35
LINE INPUT' ... 103
line number range 104
LINE ... 68
LISTO ... 90
local arrays ... 33
LOCAL .. 30, 40
LOCAL DATA ... 42
LOCAL ERROR ... , 38
local error handling ... 37
logical operators ... 10
logical shift 12
loops ... 21
LVAR 36,90
matrices 44
matrix multiplication 48
MID$.. 16, 17
MOD 49
mode changes .. 104
modulus function ... 49
MOUSE COLOUR 56, 79
MOUSE OFF ... 75, 78, 79
MOUSE ON .. 75, 78, 79
MOUSE RECTANGLE 78
MOUSE STEP .. 78
MOUSE TO ...•...... 78
mouse buttons ... 25, 26, 74, 76
mouse pointer .. 26, 74, 78
MOUSE .. 25
MOVE 68
multiplying arrays ... 47
NEW 35
OFF 103
ON ERROR LOCAL 38
ON : ... 103
Operating System ... 99
ORIGIN ... 38, 39, 68

121

BASIC V

OSCLI ... 99
OTHERWISE .. 26
OVERLAY ... 36
parameter passing : 29, 32
parameters 29
per cent operator ... 11
PLOT 67, 68, 73
POINT .. 58, 67
POINT BY ... 68, 72
pointer speed ... 78
pointer colour 56, 79
PRINT ... 104
procedure and function libraries 34
procedures 29
QUIT 103
RECTANGLE 69
registers 94
relational operators 10
relocatable modules .. 103
REPEAT ... UNTIL•...................................... 17, 21
REPORT$.. 41, 42
RESTORE DATA .. 42
RESTORE ERROR ... 38
RESTORE ... 35
RETURN parameters .. 30, 72
RIGHT$.. 16
RUN .. 35, 89
SAVE ... 89,90
shift ... 12
SOUND OFF .. 83
SOUND ON ... 83
sound star commands .. 88
SOUND .. 86
sound .. 83
sprite commands 73
sprites ... 73
stack ... : 35, 100
stereo position ... 84
STEREO ... 84

122

Index

subtracting arrays ... 47
SUM ... : ... 49
SUMLEN .. 49
summing an array ... 49
SWAP .. 14,30
SWI call ... 99
SYS function ... 99
TEMPO 85
tilde ..•...... 11
TINT 14, 58, 62
TRACE OFF .. 91
TRACE ON ... 91
TRACE PROC 91
TRACE STEP .. 91
TRACE .. 91
Twin text editor .. 91
TWIN .. 91
TWINO ... 91
unary operators .. 11
user defined error numbers ... 42
USR 94
VDU ... 19, 53, 62, 79
VOICE 84
VOICES .. 83
WAIT 81
WHEN ...•...... 25
WHILE ... ENDWHILE .. 16, 17, 21
Wimp Manager ... 74
I 11
- 11

123

BASIC V

Notes

124

Index

Notes

125

BASIC V

Notes

126

Index

Notes

127

BASIC V

Notes

128

Th is boo provides a practical guide to programming in BASIC Von the
Acorn Arc imedes. Assuming a familiarity with the BBC BASIC language
in general, it describes the many new commands offered by BASIC V,
already accla imed as one of the best and most structured versions of the
language on any micro. This book is illustrated with a wealth of easy-to
follow examples.

An essential aid for all Archimedes users, the book will also appeal to
existing BBC BASIC users who wish to be conversant with new features
of BASIC V. Major topics covered include:

e Using the colour palette
e WHILE, IF and CASE
e Use of mouse and pointer
e Local error handling
e Operators and string handling
e The Assembler
e Control structures
e Matrix operations
e Functions and Procedures
e Extended graphics commands
e Sound
e Programming hints and tips

Mike Williams has been working with computers for over twenty yea s
specialising in software design.and programming methodology. For e
past five years he has been editor of BEEBUG and RISC User, e ·g es·
circulation magazine devoted to the Archimedes .

£9.95
ISBN 1-870336-75-5

11 11 I
9 781870 336758

